B Cells with Regulatory Function in Animal Models of Autoimmune and Non-Autoimmune Diseases

Abstract

Although the identification of B cell subsets with negative regulatory functions and the definition of their mechanisms of action are recent events, the important negative regulatory roles of B cells in immune responses are now broadly recognized. There is an emerging appreciation for the pivotal role played by B cells in several areas of human diseases including autoimmune diseases and non-autoimmune diseases such as parasite infections and cancer. The recent research advancement of regulatory B cells in human disease coincides with the vastly accelerated pace of research on the bridging of innate and adaptive immune system. Current study and our continued research may provide better understanding of the mechanisms that promote regulatory B10 cell function to counteract exaggerated immune activation in autoimmune as well as non-autoimmune conditions. This review is focused on the current knowledge of BREG functions studied in animal models of autoimmune and non-autoimmune diseases.

Share and Cite:

Lin, M. , Wang, Z. and Han, X. (2015) B Cells with Regulatory Function in Animal Models of Autoimmune and Non-Autoimmune Diseases. Open Journal of Immunology, 5, 9-17. doi: 10.4236/oji.2015.51002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] DiLillo, D.J., Hamaguchi, Y., Ueda, Y., Yang, K., Uchida, J., Haas, K.M., Kelsoe, G. and Tedder, T.F. (2008) Maintenance of Long-Lived Plasma Cells and Serological Memory despite Mature and Memory B Cell Depletion during CD20 Immunotherapy in Mice. Journal of Immunology, 180, 361-371. http://dx.doi.org/10.4049/jimmunol.180.1.361
[2] LeBien, T.W. and Tedder, T.F. (2008) B Lymphocytes: How They Develop and Function. Blood, 112, 1570-1580.
http://dx.doi.org/10.1182/blood-2008-02-078071
[3] Linton, P.J., Harbertson, J. and Bradley, L.M. (2000) A Critical Role for B Cells in the Development of Memory CD4 Cells. Journal of Immunology, 165, 5558-5565.
http://dx.doi.org/10.4049/jimmunol.165.10.5558
[4] Crawford, A., Macleod, M., Schumacher, T., Corlett, L. and Gray, D. (2006) Primary T Cell Expansion and Differentiation in Vivo Requires Antigen Presentation by B Cells. Journal of Immunology, 176, 3498-3506.
http://dx.doi.org/10.4049/jimmunol.176.6.3498
[5] Bouaziz, J.D., Yanaba, K., Venturi, G.M., Wang, Y., Tisch, R.M., Poe, J.C. and Tedder, T.F. (2007) Therapeutic B Cell Depletion Impairs Adaptive and Autoreactive CD4+ T Cell Activation in Mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 20878-20883. http://dx.doi.org/10.1073/pnas.0709205105
[6] Homann, D., Tishon, A., Berger, D.P., Weigle, W.O., von Herrath, M.G. and Oldstone, M.B. (1998) Evidence for an Underlying CD4 Helper and CD8 T-Cell Defect in B-Cell-Deficient Mice: Failure to Clear Persistent Virus Infection after Adoptive Immunotherapy with Virus-Specific Memory Cells from muMT/muMT Mice. Journal of Virology, 72, 9208-9216.
[7] Bergmann, C.C., Ramakrishna, C., Kornacki, M. and Stohlman, S.A. (2001) Impaired T Cell Immunity in B Cell-Deficient Mice Following Viral Central Nervous System Infection. Journal of Immunology, 167, 1575-1583.
http://dx.doi.org/10.4049/jimmunol.167.3.1575
[8] O’Neill, S.K., Cao, Y., Hamel, K.M., Doodes, P.D., Hutas, G. and Finnegan, A. (2007) Expression of CD80/86 on B Cells Is Essential for Autoreactive T Cell Activation and the Development of Arthritis. Journal of Immunology, 179, 5109-5116. http://dx.doi.org/10.4049/jimmunol.179.8.5109
[9] Morris, A. and Moller, G. (1968) Regulation of Cellular Antibody Synthesis Effect of Adoptively Transferred Antibody-Producing Spleen Cells on Cellular Antibody Synthesis. Journal of Immunology, 101, 439-445.
[10] Shimamura, T., Hashimoto, K. and Sasaki, S. (1982) Feedback Suppression of the Immune Response in Vivo. I. Immune B Cells Induce Antigen-Specific Suppressor T Cells. Cellular Immunology, 68, 104-113.
http://dx.doi.org/10.1016/0008-8749(82)90093-4
[11] L’Age-Stehr, J., Teichmann, H., Gershon, R.K. and Cantor, H. (1980) Stimulation of Regulatory T Cell Circuits by Immunoglobulin-Dependent Structures on Activated B Cells. European Journal of Immunology, 10, 21-26.
http://dx.doi.org/10.1002/eji.1830100105
[12] Shimamura, T., Habu, S., Hashimoto, K. and Sasaki, S. (1984) Feedback Suppression of the Immune Response in Vivo. III. Lyt-1+ B Cells Are Suppressor-Inducer Cells. Cellular Immunology, 83, 221-224.
http://dx.doi.org/10.1016/0008-8749(84)90242-9
[13] Kennedy, M.W. and Thomas, D.B. (1983) A Regulatory Role for the Memory B Cell as Suppressor-Inducer of Feedback Control. The Journal of Experimental Medicine, 157, 547-558.
http://dx.doi.org/10.1084/jem.157.2.547
[14] Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D. and Anderton, S.M. (2002) B Cells Regulate Autoimmunity by Provision of IL-10. Nature Immunology, 3, 944-950. http://dx.doi.org/10.1038/ni833
[15] Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S. and Bhan, A.K. (2002) Chronic Intestinal Inflammatory Condition Generates IL-10-Producing Regulatory B Cell Subset Characterized by CD1d Upregulation. Immunity, 16, 219-230. http://dx.doi.org/10.1016/S1074-7613(02)00274-1
[16] Mauri, C., Gray, D., Mushtaq, N. and Londei, M. (2003) Prevention of Arthritis by Interleukin 10-Producing B Cells. The Journal of Experimental Medicine, 197, 489-501. http://dx.doi.org/10.1084/jem.20021293
[17] Yanaba, K., Bouaziz, J.D., Haas, K.M., Poe, J.C., Fujimoto, M. and Tedder, T.F. (2008) A Regulatory B Cell Subset with a Unique CD1dhiCD5+ Phenotype Controls T Cell-Dependent Inflammatory Responses. Immunity, 28, 639-650.
http://dx.doi.org/10.1016/j.immuni.2008.03.017
[18] Matsushita, T., Yanaba, K., Bouaziz, J.D., Fujimoto, M. and Tedder, T.F. (2008) Regulatory B Cells Inhibit EAE Initiation in Mice While Other B Cells Promote Disease Progression. Journal of Clinical Investigation, 118, 3420-3430.
http://dx.doi.org/10.1172/JCI36030
[19] Yanaba, K., Bouaziz, J.D., Matsushita, T., Tsubata, T. and Tedder, T.F. (2009) The Development and Function of Regulatory B Cells Expressing IL-10 (B10 Cells) Requires Antigen Receptor Diversity and TLR Signals. The Journal of Immunology, 182, 7459-7472. http://dx.doi.org/10.4049/jimmunol.0900270
[20] Harris, D.P., Haynes, L., Sayles, P.C., Duso, D.K., Eaton, S.M., Lepak, N.M., Johnson, L.L., Swain, S.L. and Lund, F.E. (2000) Reciprocal Regulation of Polarized Cytokine Production by Effector B and T Cells. Nature Immunology, 1, 475-482. http://dx.doi.org/10.1038/82717
[21] Brummel, R. and Lenert, P. (2005) Activation of Marginal Zone B Cells from Lupus Mice with Type A(D) CpG- Oligodeoxynucleotides. The Journal of Immunology, 174, 2429-2434.
http://dx.doi.org/10.4049/jimmunol.174.4.2429
[22] Evans, J.G., Chavez-Rueda, K.A., Eddaoudi, A., Meyer-Bahlburg, A., Rawlings, D.J., Ehrenstein, M.R. and Mauri, C. (2007) Novel Suppressive Function of Transitional 2 B Cells in Experimental Arthritis. The Journal of Immunology, 178, 7868-7878. http://dx.doi.org/10.4049/jimmunol.178.12.7868
[23] Gray, M., Miles, K., Salter, D., Gray, D. and Savill, J. (2007) Apoptotic Cells Protect Mice from Autoimmune Inflammation by the Induction of Regulatory B Cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14080-14085. http://dx.doi.org/10.1073/pnas.0700326104
[24] Burke, F., Stagg, A.J., Bedford, P.A., English, N. and Knight, S.C. (2004) IL-10-Producing B220+CD11c- APC in Mouse Spleen. The Journal of Immunology, 173, 2362-2372.
http://dx.doi.org/10.4049/jimmunol.173.4.2362
[25] Spencer, N.F. and Daynes, R.A. (1997) IL-12 Directly Stimulates Expression of IL-10 by CD5+ B Cells and IL-6 by Both CD5+ and CD5- B Cells: Possible Involvement in Age-Associated Cytokine Dysregulation. International Immunology, 9, 745-754. http://dx.doi.org/10.1093/intimm/9.5.745
[26] O’Garra, A., Stapleton, G., Dhar, V., Pearce, M., Schumacher, J., Rugo, H., Barbis, D., Stall, A., Cupp, J., Moore, K., et al. (1990) Production of Cytokines by Mouse B Cells: B Lymphomas and Normal B Cells Produce Interleukin 10. International Immunology, 2, 821-832.
http://dx.doi.org/10.1093/intimm/2.9.821
[27] Zhang, X., Deriaud, E., Jiao, X., Braun, D., Leclerc, C. and Lo-Man, R. (2007) Type I Interferons Protect Neonates from Acute Inflammation through Interleukin 10-Producing B Cells. The Journal of Experimental Medicine, 204, 1107-1118. http://dx.doi.org/10.1084/jem.20062013
[28] Wolf, S.D., Dittel, B.N., Hardardottir, F. and Janeway Jr., C.A. (1996) Experimental Autoimmune Encephalomyelitis Induction in Genetically B Cell-Deficient Mice. The Journal of Experimental Medicine, 184, 2271-2278.
http://dx.doi.org/10.1084/jem.184.6.2271
[29] Lampropoulou, V., Hoehlig, K., Roch, T., Neves, P., Calderon Gomez, E., Sweenie, C.H., Hao, Y., Freitas, A.A., Steinhoff, U., Anderton, S.M. and Fillatreau, S. (2008) TLR-Activated B Cells Suppress T Cell-Mediated Autoimmunity. The Journal of Immunology, 180, 4763-4773.
http://dx.doi.org/10.4049/jimmunol.180.7.4763
[30] Matsushita, T., Fujimoto, M., Hasegawa, M., Komura, K., Takehara, K., Tedder, T.F. and Sato, S. (2006) Inhibitory Role of CD19 in the Progression of Experimental Autoimmune Encephalomyelitis by Regulating Cytokine Response. American Journal of Pathology, 168, 812-821.
http://dx.doi.org/10.2353/ajpath.2006.050923
[31] Ray, A., Basu, S., Williams, C.B., Salzman, N.H. and Dittel, B.N. (2012) A Novel IL-10-Independent Regulatory Role for B Cells in Suppressing Autoimmunity by Maintenance of Regulatory T Cells via GITR Ligand. The Journal of Immunology, 188, 3188-3198. http://dx.doi.org/10.4049/jimmunol.1103354
[32] Hauser, S.L., Waubant, E., Arnold, D.L., Vollmer, T., Antel, J., Fox, R.J., Bar-Or, A., Panzara, M., Sarkar, N., Agarwal, S., Langer-Gould, A. and Smith, C.H. (2008) B-Cell Depletion with Rituximab in Relapsing-Remitting Multiple Sclerosis. The New England Journal of Medicine, 358, 676-688.
http://dx.doi.org/10.1056/NEJMoa0706383
[33] Bar-Or, A., Calabresi, P.A., Arnold, D., Markowitz, C., Shafer, S., Kasper, L.H., Waubant, E., Gazda, S., Fox, R.J., Panzara, M., Sarkar, N., Agarwal, S. and Smith, C.H. (2008) Rituximab in Relapsing-Remitting Multiple Sclerosis: A 72-Week, Open-Label, Phase I Trial. Annals of Neurology, 63, 395-400. http://dx.doi.org/10.1002/ana.21363
[34] Anderson, M.S. and Bluestone, J.A. (2005) The NOD Mouse: A Model of Immune Dysregulation. Annual Review of Immunology, 23, 447-485. http://dx.doi.org/10.1146/annurev.immunol.23.021704.115643
[35] Xiu, Y., Wong, C.P., Bouaziz, J.D., Hamaguchi, Y., Wang, Y., Pop, S.M., Tisch, R.M. and Tedder, T.F. (2008) B Lymphocyte Depletion by CD20 Monoclonal Antibody Prevents Diabetes in Nonobese Diabetic Mice Despite Isotype-Specific Differences in Fc Gamma R Effector Functions. The Journal of Immunology, 180, 2863-2875.
http://dx.doi.org/10.4049/jimmunol.180.5.2863
[36] Hussain, S. and Delovitch, T.L. (2007) Intravenous Transfusion of BCR-Activated B Cells Protects NOD Mice from Type 1 Diabetes in an IL-10-Dependent Manner. The Journal of Immunology, 179, 7225-7232.
http://dx.doi.org/10.4049/jimmunol.179.11.7225
[37] Tian, J., Zekzer, D., Hanssen, L., Lu, Y., Olcott, A. and Kaufman, D.L. (2001) Lipopolysaccharide-Activated B Cells Down-Regulate Th1 Immunity and Prevent Autoimmune Diabetes in Nonobese Diabetic Mice. The Journal of Immunology, 167, 1081-1089. http://dx.doi.org/10.4049/jimmunol.167.2.1081
[38] Trentham, D.E., Townes, A.S. and Kang, A.H. (1977) Autoimmunity to Type II Collagen an Experimental Model of Arthritis. The Journal of Experimental Medicine, 146, 857-868.
http://dx.doi.org/10.1084/jem.146.3.857
[39] Courtenay, J.S., Dallman, M.J., Dayan, A.D., Martin, A. and Mosedale, B. (1980) Immunisation against Heterologous Type II Collagen Induces Arthritis in Mice. Nature, 283, 666-668.
http://dx.doi.org/10.1038/283666a0
[40] Wordsworth, B.P., Lanchbury, J.S., Sakkas, L.I., Welsh, K.I., Panayi, G.S. and Bell, J.I. (1989) HLA-DR4 Subtype Frequencies in Rheumatoid Arthritis Indicate That DRB1 Is the Major Susceptibility Locus within the HLA Class II Region. Proceedings of the National Academy of Sciences of the United States of America, 86, 10049-10053.
http://dx.doi.org/10.1073/pnas.86.24.10049
[41] Brunsberg, U., Gustafsson, K., Jansson, L., Michaelsson, E., Ahrlund-Richter, L., Pettersson, S., Mattsson, R. and Holmdahl, R. (1994) Expression of a Transgenic Class II Ab Gene Confers Susceptibility to Collagen-Induced Arthritis. European Journal of Immunology, 24, 1698-1702.
http://dx.doi.org/10.1002/eji.1830240736
[42] Yanaba, K., Hamaguchi, Y., Venturi, G.M., Steeber, D.A., St Clair, E.W. and Tedder, T.F. (2007) B Cell Depletion Delays Collagen-Induced Arthritis in Mice: Arthritis Induction Requires Synergy between Humoral and Cell-Mediated Immunity. The Journal of Immunology, 179, 1369-1380.
http://dx.doi.org/10.4049/jimmunol.179.2.1369
[43] Gu, Y., Yang, J., Ouyang, X., Liu, W., Li, H., Bromberg, J., Chen, S.H., Mayer, L., Unkeless, J.C. and Xiong, H. (2008) Interleukin 10 Suppresses Th17 Cytokines Secreted by Macrophages and T Cells. European Journal of Immunology, 38, 1807-1813. http://dx.doi.org/10.1002/eji.200838331
[44] Watanabe, R., Ishiura, N., Nakashima, H., Kuwano, Y., Okochi, H., Tamaki, K., Sato, S., Tedder, T.F. and Fujimoto, M. (2010) Regulatory B Cells (B10 Cells) Have a Suppressive Role in Murine Lupus: CD19 and B10 Cell Deficiency Exacerbates Systemic Autoimmunity. The Journal of Immunology, 184, 4801-4809.
http://dx.doi.org/10.4049/jimmunol.0902385
[45] Haas, K.M., Watanabe, R., Matsushita, T., Nakashima, H., Ishiura, N., Okochi, H., Fujimoto, M. and Tedder, T.F. (2010) Protective and Pathogenic Roles for B Cells during Systemic Autoimmunity in NZB/W F1 Mice. The Journal of Immunology, 184, 4789-4800. http://dx.doi.org/10.4049/jimmunol.0902391
[46] Teichmann, L.L., Kashgarian, M., Weaver, C.T., Roers, A., Muller, W. and Shlomchik, M.J. (2011) B Cell-Derived IL-10 Does Not Regulate Spontaneous Systemic Autoimmunity in MRL.Faslpr Mice. The Journal of Immunology, 188, 678-685. http://dx.doi.org/10.4049/jimmunol.1102456
[47] Mizoguchi, A., Mizoguchi, E., Smith, R.N., Preffer, F.I. and Bhan, A.K. (1997) Suppressive Role of B Cells in Chronic Colitis of T Cell Receptor Alpha Mutant Mice. The Journal of Experimental Medicine, 186, 1749-1756.
http://dx.doi.org/10.1084/jem.186.10.1749
[48] Mizoguchi, A. and Bhan, A.K. (2006) A Case for Regulatory B Cells. The Journal of Immunology, 176, 705-710.
http://dx.doi.org/10.4049/jimmunol.176.2.705
[49] Yanaba, K., Yoshizaki, A., Asano, Y., Kadono, T., Tedder, T.F. and Sato, S. (2011) IL-10-Producing Regulatory B10 Cells Inhibit Intestinal Injury in a Mouse Model. American Journal of Pathology, 178, 735-743.
http://dx.doi.org/10.1016/j.ajpath.2010.10.022
[50] Wei, B., Velazquez, P., Turovskaya, O., Spricher, K., Aranda, R., Kronenberg, M., Birnbaumer, L. and Braun, J. (2005) Mesenteric B Cells Centrally Inhibit CD4+ T Cell Colitis through Interaction with Regulatory T Cell Subsets. Proceedings of the National Academy of Sciences of the United States of America, 102, 2010-2015.
http://dx.doi.org/10.1073/pnas.0409449102
[51] Amu, S., Saunders, S.P., Kronenberg, M., Mangan, N.E., Atzberger, A. and Fallon, P.G. (2010) Regulatory B Cells Prevent and Reverse Allergic Airway Inflammation via FoxP3-Positive T Regulatory Cells in a Murine Model. Journal of Allergy and Clinical Immunology, 125, 1114-1124.
http://dx.doi.org/10.1016/j.jaci.2010.01.018
[52] Jankovic, D., Cheever, A.W., Kullberg, M.C., Wynn, T.A., Yap, G., Caspar, P., Lewis, F.A., Clynes, R., Ravetch, J.V. and Sher, A. (1998) CD4+ T Cell-Mediated Granulomatous Pathology in Schistosomiasis Is Downregulated by a B Cell-Dependent Mechanism Requiring Fc Receptor Signaling. The Journal of Experimental Medicine, 187, 619-629.
http://dx.doi.org/10.1084/jem.187.4.619
[53] Mangan, N.E., Fallon, R.E., Smith, P., van Rooijen, N., McKenzie, A.N. and Fallon, P.G. (2004) Helminth Infection Protects Mice from Anaphylaxis via IL-10-Producing B Cells. The Journal of Immunology, 173, 6346-6356.
http://dx.doi.org/10.4049/jimmunol.173.10.6346
[54] Saaf, A.M., Halbleib, J.M., Chen, X., Yuen, S.T., Leung, S.Y., Nelson, W.J. and Brown, P.O. (2007) Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells in Vitro and Gene Expression Programs in Normal Colon and Colon Cancer. Molecular Biology of the Cell, 18, 4245-4260.
http://dx.doi.org/10.1091/mbc.E07-04-0309
[55] Wilson, M.S., Taylor, M.D., O’Gorman, M.T., Balic, A., Barr, T.A., Filbey, K., Anderton, S.M. and Maizels, R.M. (2010) Helminth-Induced CD19+CD23hi B Cells Modulate Experimental Allergic and Autoimmune Inflammation. European Journal of Immunology, 40, 1682-1696.
http://dx.doi.org/10.1002/eji.200939721
[56] Ronet, C., Hauyon-La Torre, Y., Revaz-Breton, M., Mastelic, B., Tacchini-Cottier, F., Louis, J. and Launois, P. (2009) Regulatory B Cells Shape the Development of Th2 Immune Responses in BALB/c Mice Infected with Leishmania Major through IL-10 Production. The Journal of Immunology, 184, 886-894.
http://dx.doi.org/10.4049/jimmunol.0901114
[57] Madan, R., Demircik, F., Surianarayanan, S., Allen, J.L., Divanovic, S., Trompette, A., Yogev, N., Gu, Y., Khodoun, M., Hildeman, D., Boespflug, N., Fogolin, M.B., Grobe, L., Greweling, M., Finkelman, F.D., Cardin, R., Mohrs, M., Muller, W., Waisman, A., Roers, A. and Karp, C.L. (2009) Nonredundant Roles for B Cell-Derived IL-10 in Immune Counter-Regulation. The Journal of Immunology, 183, 2312-2320. http://dx.doi.org/10.4049/jimmunol.0900185
[58] Paciorkowski, N., Shultz, L.D. and Rajan, T.V. (2003) Primed Peritoneal B Lymphocytes Are Sufficient to Transfer Protection against Brugia pahangi Infection in Mice. Infection and Immunity, 71, 1370-1378.
http://dx.doi.org/10.1128/IAI.71.3.1370-1378.2003
[59] Gillan, V., Lawrence, R.A. and Devaney, E. (2005) B Cells Play a Regulatory Role in Mice Infected with the L3 of Brugia pahangi. International Immunology, 17, 373-382. http://dx.doi.org/10.1093/intimm/dxh217
[60] Terabe, M., Swann, J., Ambrosino, E., Sinha, P., Takaku, S., Hayakawa, Y., Godfrey, D.I., Ostrand-Rosenberg, S., Smyth, M.J. and Berzofsky, J.A. (2005) A Nonclassical Non-Vα14Jα18 CD1d-Restricted (Type II) NKT Cell Is Sufficient for Down-Regulation of Tumor Immunosurveillance. The Journal of Experimental Medicine, 202, 1627-1633.
http://dx.doi.org/10.1084/jem.20051381
[61] Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X. and Blankenstein, T. (1998) B Cells Inhibit Induction of T Cell-Dependent Tumor Immunity. Nature Medicine, 4, 627-630. http://dx.doi.org/10.1038/nm0598-627
[62] Inoue, S., Leitner, W.W., Golding, B. and Scott, D. (2006) Inhibitory Effects of B Cells on Antitumor Immunity. Cancer Research, 66, 7741-7747. http://dx.doi.org/10.1158/0008-5472.CAN-05-3766
[63] Rowe, V., Banovic, T., MacDonald, K.P., Kuns, R., Don, A.L., Morris, E.S., Burman, A.C., Bofinger, H.M., Clouston, A.D. and Hill, G.R. (2006) Host B Cells Produce IL-10 Following TBI and Attenuate Acute GVHD after Allogeneic Bone Marrow Transplantation. Blood, 108, 2485-2492. http://dx.doi.org/10.1182/blood-2006-04-016063
[64] Olkhanud, P.B., Damdinsuren, B., Bodogai, M., Gress, R.E., Sen, R., Wejksza, K., Malchinkhuu, E., Wersto, R.P. and Biragyn, A. (2011) Tumor-Evoked Regulatory B Cells Promote Breast Cancer Metastasis by Converting Resting CD4+ T Cells to T-Regulatory Cells. Cancer Research, 71, 3505-3515. http://dx.doi.org/10.1158/0008-5472.CAN-10-4316
[65] Shah, S., Divekar, A.A., Hilchey, S.P., Cho, H.M., Newman, C.L., Shin, S.U., Nechustan, H., Challita-Eid, P.M., Segal, B.M., Yi, K.H. and Rosenblatt, J.D. (2005) Increased Rejection of Primary Tumors in Mice Lacking B Cells: Inhibition of Anti-Tumor CTL and TH1 Cytokine Responses by B Cells. International Journal of Cancer, 117, 574-586.
http://dx.doi.org/10.1002/ijc.21177
[66] Minard-Colin, V., Xiu, Y., Poe, J.C., Horikawa, M., Magro, C.M., Hamaguchi, Y., Haas, K.M. and Tedder, T.F. (2008) Lymphoma Depletion during CD20 Immunotherapy in Mice Is Mediated by Macrophage FcγRI, FcγRIII, and FcγRIV. Blood, 112, 1205-1213. http://dx.doi.org/10.1182/blood-2008-01-135160

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.