Share This Article:

Polymer-Controlled Synthesis of 1-(2-Pyridylazo)-2-Naphthol Hierarchical Architectures

Abstract Full-Text HTML Download Download as PDF (Size:1932KB) PP. 555-563
DOI: 10.4236/msa.2011.26074    4,791 Downloads   8,153 Views   Citations


The self-assembly of organic 1-(2-pyridylazo)-2-naphthol (PAN) into hierarchical architectures, such as microfibers, microrods, and sheaflike structures, in solution was successfully achieved by reprecipitation method with the assistance of thermoresponsive diblock copolymer poly(N,N-dimethylacrylamide)-b-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM). It was found that the morphology modification can be readily controlled by varying the polymer concentrations. The optical absorption and fluorescence emission properties of the as-prepared PAN architectures were investigated. Time-dependent spectra of the precipitating solution for sheaflike structures formation were measured to monitor the self-assembly process of PAN molecules. The results showed that the PAN microstructures exhibited intense fluorescence emission, indicating an unusual aggregation-induced emission enhancement (AIEE) phenomenon for PAN, which have great potential for future use in optoelectronic microdevices.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Leng, Q. Liao, Y. Gao and H. Li, "Polymer-Controlled Synthesis of 1-(2-Pyridylazo)-2-Naphthol Hierarchical Architectures," Materials Sciences and Applications, Vol. 2 No. 6, 2011, pp. 555-563. doi: 10.4236/msa.2011.26074.


[1] D. Horn and J. Rieger, “Organic nanoparticles in the aqueous phase-theory, experiment, and use,” Angew. Chem. Int. Ed., Vol. 40, No. 23, 2001, pp. 4330-4361.
[2] F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. H. J. Schenning, “About supramolecular assemblies of π-conjugated systems,” Chem. Rev., Vol. 105, No. 4, 2005, pp. 1491-1546.
[3] Y. S. Zhao, H. Fu, A. Peng, Y. Ma, D. Xiao, and J. Yao, “Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties,” Adv. Mater., Vol. 20, No. 15, 2008, pp. 2859-2876.
[4] Q. Tang, L. Jiang, Y. Tong, H. Li, Y. Liu, Z. Wang, W. Hu, Y. Liu, and D. Zhu, “Micrometer- and nanometer-sized organic single-crystalline transistors,” Adv. Mater., Vol. 20, No. 15, 2008, pp. 2947-2951.
[5] S. Cui, H. Liu, L. Gan, Y. Li, and D. Zhu, “Fabrication of low-dimension nanostructures based on organic conjugated molecules,” Adv. Mater., Vol. 20, No. 15, 2008, pp. 2918-2925.
[6] F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc., Vol. 125, No. 20, 2003, pp. 6244-6253.
[7] Y. S. Zhao, H. Fu, A. Peng, Y. Ma, Q. Liao, and J. Yao, “Construction and optoelectronic properties of organic one-dimensional nanostructures,” Acc. Chem. Res., Vol. 43, No. 3, 2009, pp. 409-418.
[8] M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir, Vol. 21, No. 13, 2005, pp. 6030-6037.
[9] L. B?rlǎ, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effects of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir, Vol. 22, No. 14, 2006, pp. 6256-6265.
[10] H. B. Fu and J. N.Yao, “Size effects on the optical properties of organic nanoparticles,” J. Am. Chem. Soc., Vol. 123, No. 7, 2001, pp. 1434-1439.
[11] D. Xiao, L. Xi, W. Yang, H. Fu, Z. Shuai, Y. Fang, and J. Yao, “Size-tunable emission from 1,3-diphenyl-5-(2- anthryl)-2-pyrazoline nanoparticles,” J. Am. Chem. Soc., Vol. 125, No. 22, 2003, pp. 6740-6745.
[12] C. F. J. Faul and M. Antonietti, “Facile synthesis of optically functional, highly organized nanostructures: dye- surfactant complexes,” Chem. - Eur. J., Vol. 8, No. 12, 2002, pp. 2764-2768.
[13] A. Taden, K. Landfester, and M. Antonietti, “Crystallization of dyes by directed aggregation of colloidal intermediates: a model case,” Langmuir, Vol. 20, No. 3, 2004, pp. 957-961.
[14] H. P. Cong and S. H. Yu, “Recrystallization and shape control of crystals of the organic dye acid green 27 in a mixed solvent,” Chem. - Eur. J., Vol. 13, No. 5, 2007, pp. 1533-1538.
[15] T. K. Zhang, J. H. Zhu, H. B. Yao, and S. H. Yu, “Novel fluorescein hierarchical structures fabricated by recrystallization under control of polyelectrolytes,” Cryst. Growth Des., Vol. 7, No. 12, 2007, pp. 2419-2428.
[16] Y. Wang, H. Fu, A. Peng, Y. S. Zhao, D. Xiao, J. Ma, Y. Ma, and J. Yao, “Distinct nanostructures from isomeric molecules of bis(iminopyrrole) benzenes: effects of molecular structures on nanostructural morphologies,” Chem. Commun., 2007, pp. 1623-1625.
[17] Y. Gao, X. Zhang, C. Ma, X. Li, and J. Jiang, “Morphology-controlled self-assembled nanostructures of 5,15- di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction,” J. Am. Chem. Soc., Vol. 130, No. 50, 2008, pp. 17044-17052.
[18] X. J. Zhang, X. H. Zhang, K. Zou, C. S. Lee, and S. T. Lee, “Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules,” J. Am. Chem. Soc., Vol. 129, No. 12, 2007, pp. 3527-3532.
[19] H. Yu and L. Qi, “Polymer-assisted crystallization and optical properties of uniform microrods of organic dye sudan II,” Langmuir, Vol. 25, No. 12, 2009, pp. 6781- 6786.
[20] R. O. Al-Kaysi, A. M. Müller, T. S. Ahn, S. Lee, and C. J. Bardeen, “Effects of sonication on the size and crystallinity of stable zwitterionic organic nanoparticles formed by reprecipitation in water,” Langmuir, Vol. 21, No. 17, 2005, pp. 7990-7994.
[21] H. Jiang, X. Sun, M. Huang, Y. Wang, D. Li, and S. Dong, “Rapid self-assembly of oligo(o-phenylenediamine) into one-dimensional structures through a facile reprecipitation route,” Langmuir, Vol. 22, No. 7, 2006, pp. 3358-3361.
[22] M. Kastler, W. Pisula, D. Wasserfallen, T. Pakula, and K. Müllen, “Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes,” J. Am. Chem. Soc., Vol. 127, No. 12, 2005, pp. 4286-4296.
[23] Y. S. Zhao, C. Di, W. Yang, G. Yu, Y. Liu, and J. Yao, “Photoluminescence and electroluminescence from tris (8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition,” Adv. Funct. Mater., Vol. 16, No. 15, 2006, pp. 1985-1991.
[24] H. Fu, D. Xiao, J. Yao, and G. Yang, “Nanofibers of 1,3-diphenyl-2-pyrazoline induced by cetyltrimethylammonium bBromide micelles,” Angew. Chem. Int. Ed., Vol. 42, No. 25, 2003, pp. 2883-2886.
[25] J. K. Lee, W. K. Koh, W. S. Chae and Y. R. Kim, “Novel synthesis of organic nanowires and their optical properties,” Chem. Commun., 2002, pp. 138-139.
[26] L. Jiang, Y. Fu, H. Li, and W. Hu, “Single-crystalline, size, and orientation controllable nanowires and ultralong microwires of organic semiconductor with strong photoswitching property,” J. Am. Chem. Soc., Vol. 130, No. 12, 2008, pp. 3937-3941.
[27] E. V. Keuren, E. Georgieva, and J. Adrian, “Kinetics of the formation of organic molecular nanocrystals,” Nano Lett., Vol. 1, No. 3, 2001, pp. 141-144.
[28] H. Kasai, H. S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi, “A novel preparation method of organic microcrystals,” Jpn. J. Appl. Phys., Vol. 31, 1992, pp. 1132-1134.
[29] X. Zhang, X. Zhang, W. Shi, X. Meng, C. Lee, and S. Lee, “Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties,” J. Phys. Chem. B, Vol. 109, No. 40, 2005, pp. 18777-18780.
[30] S. J. Lee, J. T. Hupp, and S. T. Nguyen, “Growth of narrowly dispersed porphyrin nanowires and their hierarchical assembly into macroscopic columns,” J. Am. Chem. Soc., Vol. 130, No. 30, 2008, pp. 9632-9633.
[31] J. Liu, Z. Nie, Y Gao, A. Adronov and H. Li, “ “Click” coupling between alkyne-decorated multiwalled carbon nanotubes and reactive PDMA-PNIPAM micelles,” J. Polym. Sci. A, Vol. 46, No. 21, 2008, pp. 7187-7199.
[32] R. G. Anderson and G. Nickless, “Heterocyclic azo dyestuffs in analytical chemistry. A review,” Analyst, Vol. 92, 1967, pp. 207-238.
[33] J. Gao, B. Peng, H. Fan, J. Kang and X. Wang, “Spectrophotometric determination of palladium after solid-liquid extraction with 1-(2-Pyridylazo)-2-naphthol at 90?C,” Talanta, Vol. 44, No. 5, 1997, pp. 837-842.
[34] A. K. De, R. A. Chalmers, and S. M. Khopkar, “Solvent extraction of metals,” Van Nostrand Reinhold, London, 1970.
[35] H. Faghihian, A. Hajishabani, S. Dadfarnia, and H. Zamani, “Use of clinoptilolite loaded with 1-(2-pyridylazo)-2-naphthol as a sorbent for preconcentration of Pb(II), Ni(II), Cd(II) and Cu(II) prior to their determination by flame atomic absorption spectroscopy,” Int. J. Environ. An. Ch., Vol. 89, No. 4, 2009, pp. 223-231.
[36] S. Shibata, “Solvent extraction and spectrophotometric determination of metals with 1-(2-pyridylazo)-2-naphthol,” Anal. Chim. Acta, Vol. 25, No. 4, 1961, pp. 348-359.
[37] A. J. Convertine, B. S. Lokitz, Y. Vasileva, L. J. Myrick, C. W. Scales, A. B. Lowe, and C. L. McCormick, “Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization,” Macromolecules, Vol. 39, No. 5, 2006, pp. 1724-1730.
[38] E. C. Cho, J. Lee, and K. Cho, “Role of bound water and hydrophobic interaction in phase transition of Poly (N-isopropylacrylamide) Aqueous Solution,” Macromolecules, Vol. 36, No. 26, 2003, pp. 9929-9934.
[39] M. Heskins and J. E. Guillet, “Solution properties of poly(N-isopropylacrylamide),” J. Macromol. Sci. A, Vol. 2, No. 8, 1968, pp. 1441-1455.
[40] Z. Wang, K. J. Ho, C. J. Medforth, and J. A. Shelnutt, “Porphyrin nanofiber bundles from phase-transfer ionic self-assembly and their photocatalytic self-metallization,” Adv. Mater., Vol. 18, No. 19, 2006, pp. 2557-2560.
[41] S. J. Lee, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, and S. T. Nguyen, “Amphiphilic porphyrin nanocrystals: morphology tuning and hierarchical assembly,” Adv. Mater., Vol. 20, No. 18, 2008, pp. 3543-3549.
[42] L. Kang, Z. Wang, Z. Cao, Y. Ma, H. Fu, and J. Yao, “Colloid chemical reaction route to the preparation of nearly monodispersed perylene nanoparticles: size-tunable synthesis and three-dimensional self-organization,” J. Am. Chem. Soc., Vol. 129, No. 23, 2007, pp. 7305-7312.
[43] H. Shi, L. Qi, J. Ma, and H. Cheng, “Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles,” J. Am. Chem. Soc., Vol. 125, No. 12, 2003, pp. 3450-3451.
[44] J. Xu, X. Liu, J. Lv, M. Zhu, C. Huang, W. Zhou, X. Yin, H. Liu, Y. Li, and J. Ye, “Morphology transition and aggregation-induced emission of an intramolecular charge- transfer compound,” Langmuir, Vol. 24, No. 8, 2008, pp. 4231-4237.
[45] Y. Dong, J. W. Y. Lam, A. Qin, J. X. Sun, J. Z. Liu, Z. Li, J. Z. Sun, H. H. Y. Sung, I. D. Williams, and H. S. Kwok, “Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1- cyclobutene,” Chem. Commun., 2007, pp. 3255-3257.
[46] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5- pentaphenylsilole,” Chem. Commun., 2001, pp. 1740- 1741.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.