[1]
|
Nakazawa, M., Takemae, T., Miyahara, A. and Matsuyama, K. (1985) A Study of Quartz Temperature Sensors Characterized by Ultralinear Frequency-Temperature Responses. IEEE Transactions on Sonics and Ultrasonics, 32, 828-834. http://dx.doi.org/10.1109/T-SU.1985.31672
|
[2]
|
Ueda, T., Kohsaka, F., Iino, T. and Yamazaki, D. (1986) Temperature Sensor Using Quartz Tuning Fork Resonator. The 40th Annual Symposium on Frequency Control, 28-30 May 1986, Philadelphia, 224-229.
|
[3]
|
Matko, V. and Safsric R. (2009) Major Improvements of Quartz Crystal Pulling Sensitivity and Linearity Using Series Reactance. Sensors, 9, 8263-8270. http://dx.doi.org/10.3390/s91008263
|
[4]
|
Filler, R.L. and Vig, J.R. (1993) Long-Term Aging of Oscillators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 40, 387-394.
|
[5]
|
Matko, V. (2011) Next Generation AT-Cut Quartz Crystal Sensing Devices. Sensors, 11, 4474-4482.
http://dx.doi.org/10.3390/s110504474
|
[6]
|
Walls, F.L. and Vig J.R. (1995) Fundamental Limits on the Frequency Stabilities of Crystal Oscillators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42, 576-589. http://dx.doi.org/10.1109/58.393101
|
[7]
|
Matko, V. and Milanovic, M. (2014) Temperature-Compensated Capacitance-Frequency Converter with High Resolution. Sensors and Actuators A: Physical, 220, 262-269.
|
[8]
|
Ehara, K., Tanaka, H., Sato, T. and Kanno, Y. (2006) Development of Inductive Quartz Crystal Oscillator Circuit with CMOS Inverter. IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, Taipei, 8-11 October, 1425-1430.
|
[9]
|
Izyan-Ruslan, R., Sato, T. and Akitsu, T. (2012) Voltage Controlled Narrow Band Wide-Variable Range Four Segment Quartz Crystal Oscillator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (UFFC), 59, 564-572. http://dx.doi.org/10.1109/TUFFC.2012.2230
|
[10]
|
Sato, T. and Akitsu, T. (2014) Simultaneous Multimode Oscillation of Stress-Compensated Cut Quartz Resonator with Narrow-Band Wide Variable-Range Quartz Crystal Oscillator. Engineering, 6, 973-988.
http://dx.doi.org/10.4236/eng.2014.613088
|
[11]
|
Sato, T., Kudo, A. and Akitsu, T. (2015) Start-Up Acceleration of Quartz Crystal Oscillator Using Active Inductance Double Resonance and Embedded Triggering Circuit. Journal of Sensor Technology, 5.
|
[12]
|
Lu, W., Tse, T. and Chan, W.-C. (2006) Crystal Oscillator Circuit Having a Start-up Time Reduction Circuit. US Patent 7034628 B1.
|
[13]
|
Izumiya, S., Asaki, J. and Adachi, T. (2003) Algebraic Analysis Method of Start-Up Characteristics of Cascade Crystal Oscillator. Electronics and Communications in Japan (Part II: Electronic), 86, 32-43.
http://dx.doi.org/10.1002/ecjb.10166
|
[14]
|
Ulmer, R.W. (1990) Stat-Up Circuit for Low Power MOS Crystal Oscillator. US Patent 4956618.
|
[15]
|
Barnes, J.A., Chi, A.R., Cutler, L.S., Healey, D.J., Leeson, D.B., McGunigal, T.E., Mullen Jr., J.A., Smith, W.L., Sydnor, R.L., Vessot, R.F.C. and Winkler, G.M.R. (1971) Characterization of Frequency Stability. IEEE Transactions on Instrumentation and Measurement, IM-20, 105-120.
|
[16]
|
Allan, D.W. (1966) Statistics of Atomic Frequency Standards. Proceedings of the IEEE, 54, 221-230.
http://dx.doi.org/10.1109/PROC.1966.4634
|
[17]
|
IEEE Standard 1139. Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities, E.E. ISBN: 0-7381-1754-4.
|
[18]
|
Linear Technology Corporation (2014) LTspice IV for Windows. http://www.linear-tech.co.jp/designtools/software/
|