[1]
|
Lindblad, G. (1976) On the Generators of Quantum Dynamical Semigroups. Communications in Mathematical Physics, 48, 119-130. http://dx.doi.org/10.1007/BF01608499
|
[2]
|
Heisenberg, W. (1966) Die Rolle dor ph?nomenologischen Theorien im System der theoretischen Physik. In: Preludes in Theoretical Physics, Amsterdam, 166.
|
[3]
|
Bourret, R. (1959) An Hypothesis Concerning Turbulent Diffusion. Canad. J. Phys, 38, 665-676.
http://dx.doi.org/10.1139/p60-072
|
[4]
|
Monin, A.S. (1955) Equation of Turbulent Diffusion. Dokl. Akad. Nauk SSSR, 105, 256-259.
|
[5]
|
Monin, A.S. and Yaglom, A.M. (1975) Statistical Fluid Mechanics. Mechanics of Turbulence Vol. 2, MIT Press, Cambridge. [Translated from Russian: Statisticheskaya Gidromekhanika. Mekhanika Turbulentnosti Part 2 (Nauka, Moscow, 1967)]
|
[6]
|
Balescu, R. (2000) Memory Effects in Plasma Transport Theory. Plasma Phys. Control. Fusion, 42, B1-B13.
http://dx.doi.org/10.1088/0741-3335/42/12B/301
|
[7]
|
Uchaikin, V.V. and Zolotarev, V.M. (1999) Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht. http://dx.doi.org/10.1515/9783110935974
|
[8]
|
Uchaikin, V.V. (2002) Multidimensional Symmetric Anomalous Diffusion. Chemical Physics, 284, 507-520.
http://dx.doi.org/10.1016/S0301-0104(02)00676-6
|
[9]
|
del Castillo-Negrete, D. (2010) Non-Diffusive, Nonlocal Transport in Fluids and Plasmas. Nonlin. Processes Gheophys., 17, 795-807. http://dx.doi.org/10.5194/npg-17-795-2010
|
[10]
|
Brizard, A.J. and Hahm, T.S. (2007) Foundations of Nonlinear Gyro-kinetic Theory. Reviews of Modern Physics, 79, 421-469. http://dx.doi.org/10.1103/RevModPhys.79.421
|
[11]
|
Str?mgren, B. (1948) On the Density Distribution and Chemical Composition of the Interstellar Gas. Astrophys. J., 108, 242-275. http://dx.doi.org/10.1086/145068
|
[12]
|
Ginzburg, V.L. (1953) Origin of Cosmic Rays and Radioastronomy. Usp.Fiz.Nauk, 51, 343. (In Russian)
|
[13]
|
Lagutin, A.A., Nikulin, Yu.A. and Uchaikin, V.V. (2001) The ?knee? in the Primary Cosmic Ray Spectrum as Consequence of the Anomalous Diffusion of the Particles in the Fractal Interstellar Medium. Nucl. Phys. В Proc. Suppl., 97, 267-270.
|
[14]
|
Lagutin, A.A. and Uchaikin, V.V. (2003) Anomalous Diffusion Equation: Application to Cosmic Ray Transport. Nucl. Instrum. Meth. Phys. Res., 201B, 212-216. http://dx.doi.org/10.1016/S0168-583X(02)01362-9
|
[15]
|
Lagutin, A.A., Strelnikov, D.V. and Tyumentsev, A.G. (2001) Mass Composition of Cosmic Rays in Anomalous Diffusion Model: Comparison with Experiment. Proc. of 27th Intern. Cosmic Ray Conf., Hamburg, Germany, 5, Copernicus Gesellschaft, Ham-burg.
|
[16]
|
Cadavid, A.C., Lawrence, J.K. and Ruzmaikin, A.A. (1999) Anomalous Diffusion of Solar Magnetic Elements. Astrophys. J, 521, 844-853. http://dx.doi.org/10.1086/307573
|
[17]
|
Osborne, J.L., Wdowczyk, J. and Wolfendale, A.W. (1976) Origin and Propagation of Cosmic Rays in the Range 100 - 1000 GeV. J. Phys. A Math. Gen., 9, 1399-1412. http://dx.doi.org/10.1088/0305-4470/9/8/030
|
[18]
|
Dorman, L.I., Ghosh, A. and Ptuskin, V.S. (1985) Diffusion of Galactic Cosmic Rays in the Vicinity of the Solar System. Astrophys. Space Sci., 109, 87-98. http://dx.doi.org/10.1007/BF00651016
|
[19]
|
Zolotarev, V.M., Uchaikin, V.V. and Saenko, V.V. (1999) Superdiffusion and Stable Laws. JETP, 88, 780-787.
http://dx.doi.org/10.1134/1.558856
|
[20]
|
Uchaikin, V.V. and Sibatov, R.T. (2004) Fractional Derivatives in the Semi-conductor Theory. Technical Physics Letters, 30, 316-318. http://dx.doi.org/10.1134/1.1748611
|
[21]
|
Uchaikin, V.V. and Sibatov, R.T. (2009) Statistical Model of Fluorescence Blinking. JETP, 109, 537-546.
http://dx.doi.org/10.1134/S106377610910001X
|
[22]
|
Uchaikin, V.V., Sibatov, R.T. (2011) Fractional Boltzmann Equation for Multiple Scattering of Resonance Radiation in Low-Temperature Plasma. J. Phys. A Math. Theor., 44, 145501. http://dx.doi.org/10.1088/1751-8113/44/14/145501
|
[23]
|
Uchaikin, V.V. (1998) Anomalous Diffusion of Particles with a Finite Free-Motion Velocity. Theoretical and Mathematical Physics, 115, 496-501. http://dx.doi.org/10.1007/BF02575506
|
[24]
|
Uchaikin, V.V. (1998) Anomalous Transport Equations and Their Application to Fractal Walking. Physica A, 255, 65-92. http://dx.doi.org/10.1016/S0378-4371(98)00047-8
|
[25]
|
Uchaikin, V.V. and Sibatov, R.T. (2012) On Fractional Differential Models for Cosmic Ray Diffusion. Gravitation Cosmology, 18, 122-126. http://dx.doi.org/10.1134/S0202289312020132
|
[26]
|
Uchaikin, V.V., Sibatov, R.T. and Saenko, V.V. (2013) Escape Time of Cosmic Rays from the Galaxy in the Anomalous Diffusion Model. Bulletin of the Russian Academy of Sciences: Physics, 77, 619-622.
http://dx.doi.org/10.3103/S1062873813050511
|
[27]
|
Uchaikin, V.V., Sibatov, R.T. and Saenko, V.V. (2013) Leaky-Box Approximation to the Fractional Diffusion Model. J. Phys.: Conf. Ser., 409, 012057.
|
[28]
|
Uchaikin, V.V. (2010) On the Fractional Derivative Model of the Transport of Cosmic Rays in the Galaxy. JETP Lett., 91, 105-109. http://dx.doi.org/10.1134/S002136401003001X
|
[29]
|
Hayakawa, S. (1969) Cosmic Ray Physics; Nuclear and Astro-physical Aspects. Wiley-Interscience, New York.
|
[30]
|
Getmantsev, G.G. (1963) On the Isotropy of Primary Cosmic Rays. Sov. Astron., 6, 477-479.
|
[31]
|
Jokipii, J.R. and Parker, E.N. (1969) Cosmic-Ray Life and the Stochastic Nature of the Galactic Magnetic Field. Astrophys. J., 155, 799.
|
[32]
|
Chuvilgin, L.G. and Ptuskin, V.S. (1993) Anomalous Diffusion of Cosmic Rays across the Magnetic Field. Astronomy and Astrophysics, 279, 278-297.
|
[33]
|
Webb, G.M., Kaghashvili, E.K., Le Roux, J.A., Shalchi, A., Zank, G.P. and Li, G. (2009) Compound and Perpendicular Diffusion of Cosmic Rays and Random Walk of the Field Lines: II. Non-Parallel Particle Transport and Drifts. Journal of Physics A: Mathematical and Theoretical, 42, 235502. http://dx.doi.org/10.1088/1751-8113/42/23/235502
|
[34]
|
Zaburdaev, V.Y. (2005) Theory of Heat Transport in a Magnetized High-Temperature Plasma. Plasma Physics Reports, 31, 1071-1077. http://dx.doi.org/10.1134/1.2147653
|
[35]
|
Uchaikin, V.V. and Saenko, V.V. (2000) Telegraph Equation in Random Walk Problem. Journal of Physical Studies, 4.
|
[36]
|
Shlesinger, M.F., Klafter, J. and West, B. (1986) Lévy Walks with Applications to Turbulence and Chaos. Physica A: Statistical Mechanics and its Applications, 140, 212-218.
|
[37]
|
Sokolov, I.M. andMetzler, R. (2003) Towards Deterministic Equations for Lévy Walks: The Fractional Material Derivative. Physical Review E, 67, 010101. http://dx.doi.org/10.1103/PhysRevE.67.010101
|
[38]
|
Uchaikin, V.V. and Sibatov, R.T. (2004) One-Dimensional Fractal Walk at a Finite Free Motion Velocity. Technical Physics Letters, 30, 316-318. http://dx.doi.org/10.1134/1.1748611
|
[39]
|
Uchaikin, V., Sibatov, R. and Byzykchi, A. (2014) Cosmic Rays Propagation along Solar Magnetic Field Lines: A Fractional Approach. Communications in Applied and Industrial Mathematics, 6, 480.
http://dx.doi.org/10.1685/journal.caim.480
|
[40]
|
Carreras, В.A., Lynch, V.E. and Zaslavsky, G.M. (2001) Anomalous Diffusion and Exit Time Distribution of Particle Tracers in Plasma Turbulence Model. Phys. Plasmas, 8, 5096.
|
[41]
|
Sibatov, R.T. and Uchaikin, V.V. (2011) Truncated Lévy Statistics for Dispersive Transport in Disordered Semiconductors. Commun. Nonlin. Sci. Numer. Simulat, 16, 4564-4572. http://dx.doi.org/10.1016/j.cnsns.2011.03.027
|
[42]
|
Zoia, A., Rosso, A. and Kardar, M. (2007) Fractional Laplacian in Bounded Domains. Phys. Rev. E, 76, 021116.
http://dx.doi.org/10.1103/PhysRevE.76.021116
|
[43]
|
Krepysheva, N., Di Pietro, L. and Neel, M.-C. (2006) Space-Fractional Advection-Diffusion and Reflective Boundary Condition. Phys. Rev. E, 73, 021104. http://dx.doi.org/10.1103/PhysRevE.73.021104
|
[44]
|
Rafeiro, H. and Samko, S. (2008) Approximative Method for the Inversion of the Riesz Potential Operator in Variable Lebesgue Spaces. Fract. Calc. Appl. Anal, 11, 269-280.
|
[45]
|
Guan, Q.-Y. and Ma, Z.-M. (2005) Boundary Problems for Fractional. Stoch. Dyn., 5, 385.
http://dx.doi.org/10.1142/S021949370500150X
|
[46]
|
Uchaikin, V.V. (2013) Fractional Phenomenology of Cosmic Ray Anomalous Diffusion. Physics-Uspekhi, 56, 1074- 1119. http://dx.doi.org/10.3367/UFNe.0183.201311b.1175
|