Share This Article:

Analysis of Nonlinear Dust-Acoustic Shock Waves in an Unmagnetized Dusty Plasma with q-Nonextensive Electrons Where Dust Is Arbitrarily Charged Fluid

Abstract Full-Text HTML XML Download Download as PDF (Size:671KB) PP. 103-110
DOI: 10.4236/jamp.2015.32015    3,387 Downloads   3,898 Views   Citations

ABSTRACT

The nonlinear propagation of dust-acoustic (DA) shock waves in three-component unmagnetized dusty plasma consisting of nonextensive electrons, Maxwellian ions and arbitrarily charged mobile dust grain has been investigated. It is found that the presence of q-nonextensive electrons and ions can change the nonlinear behavior of shock wave. The standard reductive perturbation method is employed to study the basic features (phase speed, amplitude and width) of DA shock waves (DASWs) which are significantly modified by the presence of Maxwellian ions and nonextensive electrons. The present investigation can be very effective for understanding the nonlinear characteristics of the DASWs in space and laboratory dusty plasmas.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mandal, G. and Tanisha, N. (2015) Analysis of Nonlinear Dust-Acoustic Shock Waves in an Unmagnetized Dusty Plasma with q-Nonextensive Electrons Where Dust Is Arbitrarily Charged Fluid. Journal of Applied Mathematics and Physics, 3, 103-110. doi: 10.4236/jamp.2015.32015.

References

[1] Mendis, D.A. and Rosenberg, M. (1994) Annu. Rev Astron. Astrophys., 32, 419. http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
[2] Verheest, F. (2000) Waves in Dusty Space Plasmas. Kluwer Academic Press, Dordrecht. http://dx.doi.org/10.1007/978-94-010-9945-5
[3] Rosenberg, M. and Merlino, R.L. (2007) Planet Space Sci., 55, 1464. http://dx.doi.org/10.1016/j.pss.2007.04.012
[4] Rao, N.N., Shukla, P.K. and Yu, M.Y. (1990) Planet. Space Sci., 38, 543. http://dx.doi.org/10.1016/0032-0633(90)90147-I
[5] Shukla, P.K. and Mamun, A.A. (2002) Introduction to Dusty Plasma Physics. Institute of Physics Publishing Ltd., Bristol. http://dx.doi.org/10.1887/075030653X
[6] Rosenberg, M. and Mendis, D.A. (1995) IEEE Trans. Plasma Sci., 23, 177. http://dx.doi.org/10.1109/27.376584
[7] Goertz, C.K. (1989) Rev. Geophys., 27, 271. http://dx.doi.org/10.1029/RG027i002p00271
[8] Shahmansouri, M. and Tribeche, M. (2013) Astrophys. Space Sci., 344, 99-104. http://dx.doi.org/10.1007/s10509-012-1296-y
[9] Tsallis, C. (1988) J. Stat. Phys., 52, 479. http://dx.doi.org/10.1007/BF01016429
[10] Plastino, A.R. and Plastino, A. (1993) Phys. Lett. A, 174, 384. http://dx.doi.org/10.1016/0375-9601(93)90195-6
[11] Gervino, G., Lavagno, A. and Pigato, D. (2012) Central Euro. J. Phys., 10, 594. http://dx.doi.org/10.2478/s11534-011-0123-3
[12] Lavagno, A. and Pigato, D. (2011) Euro. Phys. J. A, 47, 52. http://dx.doi.org/10.1140/epja/i2011-11052-1
[13] Lima, J.A.S., Silva, R. and Santos, J. (2000) Phys. Rev. E, 61, 3260. http://dx.doi.org/10.1103/PhysRevE.61.3260
[14] Pakzad, H.R. (2011) Phys. Scr., 83, Article ID: 015505.
[15] Tribeche, M. and Merriche, A. (2011) Phys. Plasmas, 18, Article ID: 034502.
[16] D’Angelo, N. (2004) J. Phys. D, 37, 860. http://dx.doi.org/10.1088/0022-3727/37/6/009
[17] Mamun, A.A., Shukla, P.K. and Eliasson, B. (2009) Phys. Plasmas, 16, Article ID: 1145031. http://dx.doi.org/10.1063/1.3261840
[18] Paul, A., Mandal, G., Mamun, A.A. and Amin, M.R. (2011) IEEE Trans. Plasma Sci., 39, 1254. http://dx.doi.org/10.1109/TPS.2011.2120627
[19] Shahmansouri, M. and Tribeche, M. (2013) Astrophys. Space Sci., 346, 165-170. http://dx.doi.org/10.1007/s10509-013-1430-5
[20] Schamel, H. (1972) J. Plasma Phys., 14, 905. http://dx.doi.org/10.1088/0032-1028/14/10/002
[21] Schamel, H. (1973) J. Plasma Phys., 9, 377. http://dx.doi.org/10.1017/S002237780000756X

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.