Geometry of the Standard Model of Quantum Physics

General relativity links gravitation to the structure of our space-time. Nowadays physics knows four types of interactions: Gravitation, electromagnetism, weak interactions, strong interactions. The theory of everything (ToE) is the unification of these four domains. We study several necessary cornerstones for such a theory: geometry and mathematics, adapted manifolds on the real domain, Clifford algebras over tangent spaces of these manifolds, the real Lagrangian density in connection with the standard model of quantum physics. The geometry of the standard model of quantum physics uses three Clifford algebras. The algebra  of the 3-dimensional physical space is sufficient to describe the wave of the electron. The algebra of space-time is sufficient to describe the wave of the pair electron-neutrino. A greater space-time with two additional dimensions of space generates the algebra . It is sufficient to get the wave equation for all fermions, electron, its neutrino and quarks u and d of the first generation, and the wave equations for the two other generations. Values of these waves allow defining, in each point of space-time, geometric transformations from one intrinsic manifold of space-time into the usual manifold. The Lagrangian density is the scalar part of the wave equation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Daviau, C. and Bertrand, J. (2015) Geometry of the Standard Model of Quantum Physics. Journal of Applied Mathematics and Physics, 3, 46-61. doi: 10.4236/jamp.2015.31007.

 [1] Einstein, A. (1912) Lichtgeschwindigkeit und Statik des Gravitationsfeldes. Annalen der Physik (ser. 4), 38, 355-369. [2] Einstein, A. (1912) Theorie des statischen gravitationsfeldes. Annalen der Physik (ser. 4), 38, 443-458. [3] Tonnelat, M.A. (1965) Les théories unitaires de l’électromagnétisme et de la gravitation. Gauthier-Villars, Paris. [4] Weinberg, S. (1967) A Model of Leptons. Phys. Rev. Lett., 19, 1264-1266. http://dx.doi.org/10.1103/PhysRevLett.19.1264 [5] Matveev, V.A. and Tavkhelidze, A.N. (2006) The Quantum Number Color, Colored Quarks and QCD. In: RAS INR, Ed., 99th Session of the JINR Scientific Council, Dubna, Moscow. [6] Daviau, C. and Bertrand, J. (2014) New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux. http://hal.archives-ouvertes.fr/hal-00907848 [7] Daviau, C. (2011) L’espace-temps Double. JePublie, Pouillé-les-coteaux. [8] Daviau, C. (2012) Double Space-Time and More. JePublie, Pouillé-les-coteaux. [9] Daviau, C. (2013) Invariant Quantum Wave Equations and Double Space-Time. Adv. in Im-aging and Electron Physics, 179, Chapter 1, 1-137. [10] Daviau, C. and Bertrand, J. (2014) Relativistic Gauge Invariant Wave Equation of the Electron-Neutrino. Journal of Modern Physics, 5, 1001-1022. http://dx.doi.org/10.4236/jmp.2014.511102 [11] Daviau, C. and Bertrand, J. (2013) A Lepton Dirac Equation with Additional Mass Term and a Wave Equation for a Fourth Neutrino. Ann. Fond. Louis de Broglie, 38. [12] Daviau, C. (2012) Invariance of the Dirac Equation and of Electromagnetism. Adv. Appl. Clifford Algebras, 22, 611-623. http://dx.doi.org/10.1007/s00006-012-0351-7 [13] Daviau, C. and Bertrand, J. (2014) A Wave Equation Including Leptons and Quarks for the Standard Model of Quantum Physics in Clifford Algebra. http://dx.doi.org/10.4236/jmp.2014.518210 [14] de Broglie, L. (1940) La mécanique du photon, Une nouvelle théorie de la lumière: Tome 1 La lumière dans le vide. Hermann, Paris. [15] de Broglie, L. (1942) tome 2 Les interactions entre les photons et la matière. Hermann, Paris. [16] Socroun, T. (2014) Clifford to Unify General Relativity and Elec-tromagnetism. ICCA10, Tartu (Estonia), Submitted.