Constitutive Elements of Non-Abelian Gauge Theories

DOI: 10.4236/jmp.2015.61008   PDF   HTML   XML   3,091 Downloads   3,493 Views   Citations

Abstract

A set, S, of constitutive elements characterizing mechanical theories is defined. In S, the role played by concepts such as mass, particle, fields and symmetry is discussed. This structure is first used to consider the Nother’s theorem from an algebraic point of view. As examples, we explore non-relativistic quantum mechanics and special relativistic particles. The set S is then applied to analyze non-abelian gauge theories, considering the Higgs mechanism for generation of mass.

Share and Cite:

Santana, A. and Simon, S. (2015) Constitutive Elements of Non-Abelian Gauge Theories. Journal of Modern Physics, 6, 58-69. doi: 10.4236/jmp.2015.61008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Jammer, M. (1954) Concepts of Space. Dover, N. York.
[2] Jammer, M. (1974) The Philosophy of Quantum Merchanics: The Interpretations of QM in historIcal Perspective. John Wiley and Sons, N. York.
[3] Brida, G., et al. (2011) Foundations of Physics, 41, 305. http://dx.doi.org/10.1007/s10701-009-9396-4
[4] Omnès, R. (2013) Foundations of Physics, 43, 1339.
http://dx.doi.org/10.1007/s10701-013-9750-4
[5] Fox, M. (2006) Quantum Optics, an Introduction. Oxford University Press, Oxford.
[6] Di Domenico, A., et al. (2012) Foundations of Physics, 42, 778. http://dx.doi.org/10.1007/s10701-011-9575-y
[7] Brooke, J.A. (1984) International Journal of Theoretical Physics, 23, 783. http://dx.doi.org/10.1007/BF02214066
[8] Halabi, T. (2013) Foundations of Physics, 43, 1252.
http://dx.doi.org/10.1007/s10701-013-9743-3
[9] Khrennikov, A. (2010) Foundations of Physics, 40, 1051. http://dx.doi.org/10.1007/s10701-009-9392-8
[10] Olavo, L.S.F. (2004) Foundations of Physics, 34, 891.
http://dx.doi.org/10.1007/s10701-009-9392-8
[11] Olavo, L.S.F. (2000) Physical Review A, 61, Article ID: 052109. http://dx.doi.org/10.1103/PhysRevA.61.052109
[12] Olavo, L.S.F., Lapas, L.C. and Figueiredo, A.D. (2012) Annals of Physics, 327, 1391-1407.
http://dx.doi.org/10.1016/j.aop.2012.01.004
[13] Olavo, L.S.F. (2014) Quantum Mechanics: Principles, New Perspectives, Extensions and Interpretations. Noca Science, New York.
[14] Smolin, L. (2012) Foundations of Physics, 42, 1239-1261. http://dx.doi.org/10.1007/s10701-012-9666-4
[15] Prugovecki, E. (1984) Stochastic Quantum Mechanics and Quantum Spacetime. Reidel, Dordrecht.
http://dx.doi.org/10.1007/978-94-009-4492-3
[16] Bacry, H. and Levy-Leblond, J.M. (1968) Journal of Mathematical Physics, 9, 1605.
http://dx.doi.org/10.1063/1.1664490
[17] Santana, A.E., Matos-Neto, A. and Vianna, J.D.M. (1994) Hadronic Journal, 17, 539.
[18] Rovelli, C. (2014) Foundations of Physics, 44, 91-104.
http://dx.doi.org/10.1007/s10701-013-9768-7
[19] Oliveira, M.D., Fernandes, M.C.B., Khanna, F.C., Santana, A.E. and Vianna, J.D.M. (2004) Annals of Physics, 312, 492-510.
http://dx.doi.org/10.1016/j.aop.2004.03.009
[20] Brading, K. and Castellanis, E. (2003) Symmetry in Physics: Philosophical Reflections. Cambridge University Press, Cambridge.
[21] Khanna, F.C., Malbouisson, A.P.C., Malbouisson, J.M.C. and Santana, A.E. (2009) Thermal Quantum Field Theory: Algebraic Aspects and Applications. World Scientific, Singapore.
[22] Khanna, F.C., Malbouisson, A.P.C., Malbouisson, J.M.C. and Santana, A.E. (2014) Physics Reports, 539, 135-224.
http://dx.doi.org/10.1016/j.physrep.2014.02.002
[23] Levy-Leblond, J.M. (1963) Journal of Mathematical Physics, 4, 776. http://dx.doi.org/10.1063/1.1724319
[24] Levy-Leblond, J.M. (1967) Communications in Mathematical Physics, 4, 157-176.
http://dx.doi.org/10.1007/BF01645427
[25] Levy-Leblond, J.M. (1967) Communications in Mathematical Physics, 6, 286-311.
http://dx.doi.org/10.1007/BF01646020
[26] Ludwig, G. and Thurler, G. (2006) A New Foundation of Physical Theories. Springer, Berlin.
[27] Weinberg, S. (2011) The Quantum Theory of Fields I. Cambridge University Press, Cambridge.
[28] Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory. Addison-Wesley, New York.
[29] Toll, J.S. (1956) Physical Review, 104, 1760-1770.
http://dx.doi.org/10.1103/PhysRev.104.1760
[30] Schroer, B. (2012) Foundations of Physics, 42, 1481-1522. http://dx.doi.org/10.1007/s10701-012-9676-2
[31] Plácido, H.Q., Bunchaft, R. and Santana, A.E. (1992) Hadronic Journal, 15, 225-238.
[32] Newton, I. (1995) The Principia. Prometheus Book, New York.
[33] Umezawa, H. (1993) Advanced Field Theory: Micro, Macro and Thermal Physics. American Institute of Physics, New York.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.