Theories in Spin Dynamics of Solid-State Nuclear Magnetic Resonance Spectroscopy

Abstract

This short review article presents theories used in solid-state nuclear magnetic resonance spectroscopy. Main theories used in NMR include the average Hamiltonian theory, the Floquet theory and the developing theories are the Fer expansion or the Floquet-Magnus expansion. These approaches provide solutions to the time-dependent Schrodinger equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance in particular. Methods of these expansion schemes used as numerical integrators for solving the time dependent Schrodinger equation are presented. The action of their propagator operators is also presented. We highlight potential future theoretical and numerical directions such as the time propagation calculated by Chebychev expansion of the time evolution operators and an interesting transformation called the Cayley method.

Share and Cite:

Mananga, E. , Moghaddasi, J. , Sana, A. and Sadoqi, M. (2015) Theories in Spin Dynamics of Solid-State Nuclear Magnetic Resonance Spectroscopy. World Journal of Nuclear Science and Technology, 5, 27-42. doi: 10.4236/wjnst.2015.51004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Schrodinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 28, 1049-1970.
http://dx.doi.org/10.1103/PhysRev.28.1049
[2] Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. 4th Edition, Oxford University Press, Oxford.
[3] Hazewinkel, M. (2001) Schrodinger Equation. Encyclopedia of Mathematics, Edition Springer.
[4] Muller-Kirsten, H.J.W. (2012) Introduction to Quantum Mechanics: Schrodinger Equation and Path Integral. 2nd Edition, World Scientific.
http://dx.doi.org/10.1142/8428
[5] Griffiths, D.J. (2004) Introduction to Quantum Mechanics. 2nd Edition, Benjamin Cummings.
[6] Berman, M. and Kosloff, R. (1991) Time-Dependent Solution of the Liouville-Von Neumann Equation: Non-Dissipative Evolution. Computer Physics Communications, 63, 1-20.
http://dx.doi.org/10.1016/0010-4655(91)90233-B
[7] Andrew, E.R., Bradbury, A. and Eades, R.G. (1958) Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed. Nature, 182, 1659.
http://dx.doi.org/10.1038/1821659a0
[8] Andrew, E.R., Bradbury, A. and Eades, R.G. (1959) Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation. Nature, 183, 1802-1803.
http://dx.doi.org/10.1038/1831802a0
[9] Lowe, I.J. (1959) Free Induction Decays of Rotating Solids. Physical Review Letters, 2, 285-287.
http://dx.doi.org/10.1103/PhysRevLett.2.285
[10] Schaefer, J. and Stejskal, E.O. (1976) Carbon-13 Nuclear Magnetic Resonance of Polymers Spinning at the Magic Angle. Journal of American Chemical Society, 98, 1031.
http://dx.doi.org/10.1021/ja00420a036
[11] Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford.
[12] Hafner, S. and Demco, D.E. (2002) Solid-State NMR Spectroscopy under Periodic Modulation by Fast Magic Angle Spinning and Pulses: A Review. Solid State Nuclear Magnetic Resonance, 22, 247-274.
[13] Mehring, M., Pines, A., Rhim, W.-K. and Waugh, J.S. (1971) Spin-Decoupling in the Resolution of Chemical Shifts in Solids by Pulsed NMR. Journal of Chemical Physics, 54, 3239-3240.
http://dx.doi.org/10.1006/snmr.2002.0088
[14] Jaroniec, C.P., Tounge, B.A., Rienstra, C.M., Herzfeld, J. and Griffin, R.G. (2000) Recoupling of Heteronuclear Dipolar Interactions with Rotational-Echo Double-Resonance at High Magic-Angle Spinning Frequencies. Journal of Magnetic Resonance, 146, 132-139.
http://dx.doi.org/10.1006/jmre.2000.2128
[15] Charpentier, T., Fermon, C. and Virlet, J. (1998) Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei. Journal of Magnetic Resonance, 132, 181-190.
http://dx.doi.org/10.1006/jmre.1998.1415
[16] Ernst, M., Geen, H. and Meier, B.H. (2006) Amplitude-Modulated Decoupling in Rotating Solids: A Bimodal Floquet Approach. Solid State Nucleaire Magnetic Resonance, 29, 2-21.
http://dx.doi.org/10.1016/j.ssnmr.2005.08.004
[17] Barone, S.R., Narcowich, M.A. and Narcowich, F.J. (1977) Floquet Theory and Applications. Physical Review A, 15, 1109-1125.
http://dx.doi.org/10.1103/PhysRevA.15.1109
[18] Filip, C., Filip, X., Demco, D.E. and Hafner, S. (1997) Spin Dynamics under Magic Angle Spinning by Floquet Formalism. Molecular Physics, 92, 757-771.
http://dx.doi.org/10.1080/002689797170031
[19] Friedrich, U., Schnell, I., Brown, S.P., Lupulescu, A., Demco, D.E. and Spiess, H.W. (1998) Spinning-Sideband Patterns in Multiple-Quantum Magic-Angle Spinning NMR Spectroscopy. Molecular Physics, 95, 1209-1227.
http://dx.doi.org/10.1080/00268979809483252
[20] Boender, G.J., Vega, S. and De Groot, H.J.M. (2000) Quantized Field Description of Rotor Frequency-Driven Dipolar Recoupling. Journal of Chemical Physics, 112, 1096-1106.
http://dx.doi.org/10.1063/1.480664
[21] Ernst, M., Samoson, A. and Meier, B.H. (2005) Decoupling and Recoupling Using Continuous Waves Irradiation in Magic-Angle-Spinning Solid-State NMR: A Unified Description Using Bimodal Floquet Theory. Journal of Chemical Physics, 123, Article ID: 064102.
http://dx.doi.org/10.1063/1.1944291
[22] Ding, S. and McDowell, C.A. (1998) The Equivalence between Floquet Formalism and the Multi-Step Approach in Computing the Evolution Operator of a Periodical Time-Dependent Hamiltonian. Chemical Physics Letters, 288, 230-234.
http://dx.doi.org/10.1016/S0009-2614(98)00307-8
[23] Buishvili, L.L., Volzhan, E.B. and Menabde, M.G. (1981) Higher Approximations in the Theory of the Average Hamiltonian. Theoretical and Mathematical Physics, 46, 166-173.
http://dx.doi.org/10.1007/BF01030852
[24] Emetere, M.E. (2014) Analytical Solutions of Three Dimensional Time-Dependent Shrodinger Equation Using Bloch NMR Approach for NMR Studies. Applied Mathematical Sciences, 8, 2753-2762.
http://dx.doi.org/10.12988/ams.2014.4012
[25] Lee, Y.K., Kurur, N.D., Helmle, M., Johannessen, O.G., Nielsen, N.C. and Levitt, M.H. (1995) Efficient Dipolar Recoupling in the NMR of Rotating Solids. A Sevenfold Symmetric Radiofrequency Pulse Sequence. Chemical Physical Letters, 242, 304-309.
http://dx.doi.org/10.1016/0009-2614(95)00741-L
[26] Leforestier, C., Bisseling, R.H., Cerjan, C., Feit, M.D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H.-D., Lipkin, N., Roncero, O. and Kosloff, R. (1991) A Comparison of Different Propagation Schemes for the Time Dependent Schrodinger Equation. Journal of Computational Physics, 94, 59-80.
http://dx.doi.org/10.1016/0021-9991(91)90137-A
[27] Haeberlen, U. and Waugh, J.S. (1968) Coherent Averaging Effects in Magnetic Resonance. Physical Review, 175, 453-467.
http://dx.doi.org/10.1103/PhysRev.175.453
[28] Floquet, G. (1883) Sur les Equations Differentielles Lineaires a Coefficients Periodiques. Annales Scientifics de l’Ecole Normale Superieur, 12, 47-88.
http://eudml.org/doc/80895
[29] Shirley, J.H. (1965) Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time. Physical Review, 138, B979-B987.
http://dx.doi.org/10.1103/PhysRev.138.B979
[30] Maricq, M.M. (1982) Application of Average Hamiltonian Theory to the NMR of Solids. Physical Review B25, 6622-6632.
http://dx.doi.org/10.1103/PhysRevB.25.6622
[31] Zur, Y., Levitt, M.H. and Vega, S. (1983) Multiphoton NMR Spectroscopy on a Spin System with I=1/2. Journal of Chemical Physics, 78, 5293.
http://dx.doi.org/10.1063/1.445483
[32] Madhu, P.K. and Kurur, N.D. (2006) Fer Expansion for Effective Propagators and Hamiltonians in NMR. Chemical Physical Letters, 418, 235-238.
http://dx.doi.org/10.1016/j.cplett.2005.10.134
[33] Fer, F. (1958) Bulletin de la Classe des Sciences. Academie Royalede Belgique, 44, 818-829.
[34] Mananga, E.S. and Charpentier, T. (2011) Introduction of the Floquet-Magnus Expansion in Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Chemical Physics, 135, Article ID: 044109.
http://dx.doi.org/10.1063/1.3610943
[35] Blanes, S., Casas, F., Oteo, J.A. and Ros, J. (2009) The Magnus Expansion and Some of Its Applications. Physics Reports, 470, 151-238.
http://dx.doi.org/10.1016/j.physrep.2008.11.001
[36] Casas, F., Oteo, J.A. and Ros, J. (2001) Floquet Theory: Exponential Perturbative Treatment. Journal of Physics A: Mathematical and General, 34, 3379-3388.
http://dx.doi.org/10.1088/0305-4470/34/16/305
[37] Dumont, R.S., Jain, S. and Bain, A. (1997) Simulation of Many-Spin System Dynamics via Sparse Matrix Methodology. Journal of Chemical Physics, 106, 5928.
http://dx.doi.org/10.1063/1.473258
[38] Scholz, I., Meier, B.H. and Ernst, M. (2007) Operator-Based Triple-Mode Floquet Theory in Solid-State NMR. Journal of Chemical Physics, 127, Article ID: 204504.
http://dx.doi.org/10.1063/1.2800319
[39] Suli, E. and Mayers, D. (2003) An Introduction to Numerical Analysis. Cambridge University Press, Cambridge.
[40] Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions. Dover Publications, Dover.
[41] Iserles, A. (2001) On Cayley-Transform Methods for the Discretization of Lie-Group Equations. Foundations on Computational Mathematics, 1, 129-160.
http://dx.doi.org/10.1007/s102080010003
[42] Chu, M.T. and Morris, L.K. (1988) Isospectral Flows and Abstract Matrix Factorization. Society for Industrial and Applied Mathematics Journal of Numerical Analysis, 25, 1383-1391.
http://dx.doi.org/10.1137/0725080
[43] Leimkuhler, J.B. and Van Vleck, E.S. (1997) Orthosymplectic Integration of Linear Hamiltonian System. Numerical Mathematics, 77, 269-282.
http://dx.doi.org/10.1007/s002110050286
[44] Lewis, D. and Simo, J.C. (1994) Conserving Algorithms for the Dynamics of Hamiltonian Systems on Lie Groups. Journal of Nonlinear Science, 4, 253-299.
http://dx.doi.org/10.1007/BF02430634
[45] Abragam, A. (1961) The Principle of Nuclear Magnetism. Clarendon Press, Oxford.
[46] Ben-Reuven, A. and Rabin, Y. (1979) Theory of Resonance Scattering and Absorption of Strong Coherent Radiation by Thermally Relaxing Multi-Level Atomic Systems. Physical Review A, 19, 2056-2073.
http://dx.doi.org/10.1103/PhysRevA.19.2056
[47] Mananga, E.S. (2014) Future Theoretical Approaches in Nuclear Magnetic Resonance. Journal of Modern Physics, 5, 145-148.
[48] Raleigh, D.P., Levitt, M.H. and Griffin, R.G. (1988) Rotational Resonance in Solid State NMR. Chemical Physics Letters, 146, 71-76.
http://dx.doi.org/10.1016/0009-2614(88)85051-6
[49] Hohwy, M., Rienstra, C.M., Jaroniec, C.P. and Griffin, R.G. (1999) Fivefold Symmetric Homonuclear Dipolar Recoupling in Rotating Solids: Application to Double Quantum Spectroscopy. Journal of Chemical Physics, 110, 7983.
http://dx.doi.org/10.1063/1.478702
[50] Ishii, Y., Terao, T. and Kainosho, M. (1996) Relayed Anisotropy Correlation NMR: Determination of Dihedral Angles in Solids. Chemical Physics Letters, 265, 133-140.
http://dx.doi.org/10.1016/0009-2614(96)00426-5
[51] Ishii, Y., Hirao, K., Terao, T., Terauchi, T., Oba, M., Nishiyama, K. and Kainosho, M. (1998) Determination of Peptide Angles in Solids by Relayed Anisotropy Correlation NMR. Solid State Nuclear Magnetic Resonance, 11, 169-175.
http://dx.doi.org/10.1016/S0926-2040(98)00038-1
[52] Mananga, E.S. (2013) Applications of Floquet-Magnus Expansion, Average Hamiltonian Theory and Fer Expansion to Study Interactions in Solid State NMR When Irradiated with the Magic-Echo Sequence. Solid State Nuclear Magnetic Resonance, 55-56, 54-62.
http://dx.doi.org/10.1016/j.ssnmr.2013.08.002
[53] Mananga, E.S. (2013) Criteria to Average Out the Chemical Shift Anisotropy in Solid-State NMR When Irradiated with BABA I, BABA II, and C7 Radiofrequency Pulse Sequences. Solid State Nuclear Magnetic Resonance, 55-56, 63-72.
http://dx.doi.org/10.1016/j.ssnmr.2013.08.003
[54] Mananga, E.S., Reid, A.E. and Charpentier, T. (2012) Efficient Theory of Dipolar Recoupling in Solid-State Nuclear Magnetic Resonance of Rotating Solids using Floquet-Magnus Expansion: Application on BABA and C7 Radiofrequency Pulse Sequences. Solid State Nuclear Magnetic Resonance, 41, 32-47.
http://dx.doi.org/10.1016/j.ssnmr.2011.11.004
[55] Mananga, E.S. and Reid, A.E. (2013) Investigation of the Effect of Finite Pulse Errors on the BABA Pulse Sequence using the Floquet-Magnus Expansion Approach. Molecular Physics, 111, 243-257.
http://dx.doi.org/10.1080/00268976.2012.718379
[56] Purcell, E.M., Torrey, H.C. and Pound, R.V. (1946) Resonance Absorption by Nuclear Magnetic Moments in a Solid. Physical Review, 69, 37-38.
http://dx.doi.org/10.1103/PhysRev.69.37
[57] Bloch, F., Hansen, W.W. and Packard, M. (1946) The Nuclear Induction Experiment. Physical Review, 70, 474-485.
http://dx.doi.org/10.1103/PhysRev.70.474
[58] Brinkmann, A., Eden, M. and Levitt, M.H. (2000) Synchronous Helical Pulse Sequences in Magic-Angle Spinning Nuclear Magnetic Resonance: Double Quantum Recoupling of Multiple-Spin Systems. Journal of Chemical Physics, 112, 8539.
http://dx.doi.org/10.1063/1.481458
[59] Hohwy, M., Jakobsen, H.J., Eden, M., Levitt, M.H. and Nielsen, N.C. (1998) Broadband Dipolar Recoupling in the Nuclear Magnetic Resonance of Rotating Solids: A Compensated C7 Pulse Sequence. Journal of Chemical Physics, 108, 2686.
http://dx.doi.org/10.1063/1.475661
[60] Brinkmann, A. and Levitt, M.H. (2001) Symmetry Principles in the Nuclear Magnetic Resonance of Spinning Solids: Heteronuclear Recoupling by Generalized Hatmann-Hahn Sequences. Journal of Chemical Physics, 115, 357.
http://dx.doi.org/10.1063/1.1377031
[61] Carravetta, M., Eden, M., Zhao, X., Brinkmann, A. and Levitt, M.H. (2000) Symmetry Principles for the Design of Radiofrequency Pulse Sequences in the Nuclear Magnetic Resonance of Rotating Solids. Chemical Physical Letters, 321, 205-215.
http://dx.doi.org/10.1016/S0009-2614(00)00340-7
[62] Tycko, R. (2007) Symmetry-Based Constant-Time Homonuclear Dipolar Recoupling in Solid-State NMR. Journal of Chemical Physics, 126, Article ID: 064506.
http://dx.doi.org/10.1063/1.2437194
[63] Tycko, R. (2008) Lecture Notes for the First Winter School on Biomolecular Solid State NMR, Stowe, Vermont, 20-25 January 2008.
[64] Eden, M. and Levitt, M.H. (1999) Pulse Sequence Symmetries in Nuclear Magnetic Resonance of Spinning Solids: Application to Heteronuclear Decoupling. Journal of Chemical Physics, 111, 1511.
http://dx.doi.org/10.1063/1.479410
[65] Sanctuary, B.C. and Cole, H.B.R. (1987) Multipole Theory of Composite Pulses. Journal of Magnetic Resonance, 71, 106-115.
http://dx.doi.org/10.1016/0022-2364(87)90131-4
[66] Levitt, M.H. (1982) Symmetrical Composite Pulse Sequences for NMR Population Inversion. I. Compensation of Radiofrequency Field Inhomogeneity. Journal of Magnetic Resonance, 48, 234-264.
http://dx.doi.org/10.1016/0022-2364(82)90275-X
[67] Tycko, R., Cho, H.M., Schneider, E. and Pines, A. (1985) Composite Pulses without Phase Distortion. Journal of Magnetic Resonance, 61, 90-101.
http://dx.doi.org/10.1016/0022-2364(85)90270-7
[68] Leskes, M., Madhu, P.K. and Vega, S. (2010) Floquet Theory in Solid-State Nuclear Magnetic Resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 55, 345-380.
http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
[69] Scholz, I., Van Beek, J.D. and Ernst, M. (2010) Operator-Based Floquet Theory in Solid-State NMR. Solid State Nuclear Magnetic Resonance, 37, 39-59.
http://dx.doi.org/10.1016/j.ssnmr.2010.04.003
[70] Evans, W. (1968) On Some Applications of Magnus Expansion in Nuclear Magnetic Resonance. Annals of Physics, 48, 72-93.
http://dx.doi.org/10.1016/0003-4916(68)90270-4
[71] Goldman, M., Grandinetti, P.J., Llor, A., Olejniczak, Z., Sachleben, J.R. and Zwanziger, J.W. (1992) Theoretical Aspects of Higher-Order Truncations in Solid-State Nuclear Magnetic Resonance. Journal of Chemical Physics, 97, 8947.
http://dx.doi.org/10.1063/1.463321
[72] Tycko, R. (2008) Introduction to Special Topic: New Developments in Magnetic Resonance. Journal of Chemical Physical, 128, Article ID: 052101.
http://dx.doi.org/10.1063/1.2833958
[73] Mananga, E.S., Roopchand, R., Rumala, Y.S. and Boutis, G.S. (2007) On the Application of Magic Echo Cycles for Quadrupolar Echo Spectroscopy of Spin-1 Nuclei. Journal of Magnetic Resonance, 185, 28-37.
http://dx.doi.org/10.1016/j.jmr.2006.10.016
[74] Mananga, E.S., Rumala, Y.S. and Boutis, G.S. (2006) Finite Pulse Width Artifact Suppression in Spin-1 Quadrupolar Echo Spectra by Phase Cycling. Journal of Magnetic Resonance, 181, 296-303.
http://dx.doi.org/10.1016/j.jmr.2006.05.015
[75] Mananga, E.S., Hsu, C.D., Ishmael, S., Islam, T. and Boutis, G.S. (2008) Probing the Validity of Average Hamiltonian Theory for Spin I=1, 3/2 and 5/2 Nuclei by Analyzing a Simple Two-Pulse Sequence. Journal of Magnetic Resonance, 193, 10-22.
http://dx.doi.org/10.1016/j.jmr.2008.03.014
[76] Levitt, M.H. (2008) Symmetry in the Design of NMR Multiple-Pulse Sequences. Journal of Chemical Physics, 128, Article ID: 052205.
http://dx.doi.org/10.1063/1.2833958
[77] Vandersypen, L.M.K. and Chuang, I.L. (2004) NMR Techniques for Quantum Control and Computation. Review of Modern Physics, 76, 1037-1069.
http://dx.doi.org/10.1103/RevModPhys.76.1037
[78] Hu, B., Delevoye, L., Lafon, O., Trebosc, J. and Amoureux, J.P. (2009) Double-Quantum NMR Spectroscopy of 31P Species Submitted to Very Large CSAs. Journal of MagneticResonance, 200, 178-188.
http://dx.doi.org/10.1016/j.jmr.2009.06.020
[79] Scholz, I., Van Beek, J.D. and Ernst, M. (2010) Operator-Based Floquet Theory in Solid-State NMR. Solid State Nuclear Magnetic Resonance, 37, 39-59.
http://dx.doi.org/10.1016/j.ssnmr.2010.04.003
[80] Leskes, M., Akbey, U., Oschkinat, H., van Rossum, B.-J. and Vega, S. (2011) Radio Frequency Assisted Homonuclear Recoupling—A Floquet Description of Homonuclear Recoupling via Surrounding Heteronuclei in Fully Protonated to Fully Deuterated Systems. Journal of Magnetic Resonance, 209, 207-219.
http://dx.doi.org/10.1016/j.jmr.2011.01.015
[81] Mehring, M. (1983) Principles of High Resolution NMR in Solids. Springer-Verlag, New York.
[82] Schmidt-Rohr, K. and Spiess, H.W. (1996) Multidimensional Solid-State NMR and Polymers. Academic Press, London.
[83] Schmidt, A. and Vega, S. (1992) The Floquet Theory of Nuclear Magnetic Resonance Spectroscopy of Single Spins and Dipolar Coupled Spin Pairs in Rotating Solids. Journal of Chemical Physics, 96, 2655.
http://dx.doi.org/10.1063/1.462015
[84] Ramachandran, R. and Griffin, R.G. (2005) Multipole-Multimode Floquet Theory in Nuclear Magnetic Resonance. Journal of Chemical Physics, 122, Article ID: 164502.
http://dx.doi.org/10.1063/1.1875092
[85] Sanctuary, B.C. (1976) Multipole Operators for an Arbitrary Number of Spins. Journal of Chemical Physics, 64, 4352.
http://dx.doi.org/10.1063/1.432104
[86] Sanctuary, B.C. (1983) Multipole NMR. Molecular Physics, 48, 1155-1176.
http://dx.doi.org/10.1080/00268978300100841
[87] Ramesh, R. and Krishnan, M.S. (2001) Effective Hamiltonians in Floquet Theory of Magic Angle Spinning Using van Vleck Transformation. Journal of Chemical Physics, 114, 5967.
http://dx.doi.org/10.1063/1.1354147
[88] Blanes, S., Casas, F., Oteo, J.A. and Ros, J. (1998) Magnus and Fer Expansions for Matrix Differential Equations: The Convergence Problem. Journal of Physics A: Mathematical and General, 31, 259-268.
http://dx.doi.org/10.1088/0305-4470/31/1/023
[89] Haeberlen, U. (1976) Advance in Magnetic Resonance. Supplement 1, Academic Press, New York.
[90] Casa, F., Oteo, J.A. and Ros, J. (1991) Lie Algebraic Approach to Fer’s Expansion for Classical Hamiltonian Systems. Journal of Physics A: Mathematical and General, 24, 4037-4046.
http://dx.doi.org/10.1088/0305-4470/24/17/020
[91] Feike, M., Demco, D.E., Graf, R., Gottwald, J., Hafner, S. and Spiess, H.W. (1996) Broadband Multiple-Quantum NMR Spectroscopy. Journal of Magnetic Resonance A, 122, 214-221.
http://dx.doi.org/10.1006/jmra.1996.0197
[92] Mananga, E.S. (2013) Progress in Spin Dynamics Solid-State Nuclear Magnetic Resonance with the Application of Floquet-Magnus Expansion to Chemical Shift Anisotropy. Solid State Nuclear Magnetic Resonance, 54, 1-7.
http://dx.doi.org/10.1016/j.ssnmr.2013.04.001
[93] Tal-Ezer, H. and Kosloff, R. (1984) An Accurate and Efficient Scheme for Propagating the Time Dependent Schrodinger Equation. Journal of Chemical Physics, 81, 3967.
http://dx.doi.org/10.1063/1.448136
[94] Moler, C.B. and Van Loan, C.F. (2003) Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. Society for Industrial and Applied Mathematics Review, 45, 3-49.
http://dx.doi.org/10.1137/S00361445024180
[95] Rivlin, T.J. (1990) Chebychev Polynomials. 2nd Edition, Wiley, New York.
[96] Blanes, S., Casas, F. and Ros, J. (2002) High Order Optimized Geometric Integrators for Linear Differential Equations. BIT, 42, 262-284.
[97] Lopez, L. and Politi, T. (2001) Applications of the Cayley Approach in the Numerical Solution of Matrix Differential Systems on Quadratic Groups. Applied Numerical Mathematics, 36, 35-55.
http://dx.doi.org/10.1016/S0168-9274(99)00049-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.