[1]
|
Schrodinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 28, 1049-1970. http://dx.doi.org/10.1103/PhysRev.28.1049
|
[2]
|
Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. 4th Edition, Oxford University Press, Oxford.
|
[3]
|
Hazewinkel, M. (2001) Schrodinger Equation. Encyclopedia of Mathematics, Edition Springer.
|
[4]
|
Muller-Kirsten, H.J.W. (2012) Introduction to Quantum Mechanics: Schrodinger Equation and Path Integral. 2nd Edition, World Scientific. http://dx.doi.org/10.1142/8428
|
[5]
|
Griffiths, D.J. (2004) Introduction to Quantum Mechanics. 2nd Edition, Benjamin Cummings.
|
[6]
|
Berman, M. and Kosloff, R. (1991) Time-Dependent Solution of the Liouville-Von Neumann Equation: Non-Dissipative Evolution. Computer Physics Communications, 63, 1-20. http://dx.doi.org/10.1016/0010-4655(91)90233-B
|
[7]
|
Andrew, E.R., Bradbury, A. and Eades, R.G. (1958) Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed. Nature, 182, 1659. http://dx.doi.org/10.1038/1821659a0
|
[8]
|
Andrew, E.R., Bradbury, A. and Eades, R.G. (1959) Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation. Nature, 183, 1802-1803. http://dx.doi.org/10.1038/1831802a0
|
[9]
|
Lowe, I.J. (1959) Free Induction Decays of Rotating Solids. Physical Review Letters, 2, 285-287. http://dx.doi.org/10.1103/PhysRevLett.2.285
|
[10]
|
Schaefer, J. and Stejskal, E.O. (1976) Carbon-13 Nuclear Magnetic Resonance of Polymers Spinning at the Magic Angle. Journal of American Chemical Society, 98, 1031. http://dx.doi.org/10.1021/ja00420a036
|
[11]
|
Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford.
|
[12]
|
Hafner, S. and Demco, D.E. (2002) Solid-State NMR Spectroscopy under Periodic Modulation by Fast Magic Angle Spinning and Pulses: A Review. Solid State Nuclear Magnetic Resonance, 22, 247-274.
|
[13]
|
Mehring, M., Pines, A., Rhim, W.-K. and Waugh, J.S. (1971) Spin-Decoupling in the Resolution of Chemical Shifts in Solids by Pulsed NMR. Journal of Chemical Physics, 54, 3239-3240. http://dx.doi.org/10.1006/snmr.2002.0088
|
[14]
|
Jaroniec, C.P., Tounge, B.A., Rienstra, C.M., Herzfeld, J. and Griffin, R.G. (2000) Recoupling of Heteronuclear Dipolar Interactions with Rotational-Echo Double-Resonance at High Magic-Angle Spinning Frequencies. Journal of Magnetic Resonance, 146, 132-139. http://dx.doi.org/10.1006/jmre.2000.2128
|
[15]
|
Charpentier, T., Fermon, C. and Virlet, J. (1998) Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei. Journal of Magnetic Resonance, 132, 181-190. http://dx.doi.org/10.1006/jmre.1998.1415
|
[16]
|
Ernst, M., Geen, H. and Meier, B.H. (2006) Amplitude-Modulated Decoupling in Rotating Solids: A Bimodal Floquet Approach. Solid State Nucleaire Magnetic Resonance, 29, 2-21. http://dx.doi.org/10.1016/j.ssnmr.2005.08.004
|
[17]
|
Barone, S.R., Narcowich, M.A. and Narcowich, F.J. (1977) Floquet Theory and Applications. Physical Review A, 15, 1109-1125. http://dx.doi.org/10.1103/PhysRevA.15.1109
|
[18]
|
Filip, C., Filip, X., Demco, D.E. and Hafner, S. (1997) Spin Dynamics under Magic Angle Spinning by Floquet Formalism. Molecular Physics, 92, 757-771. http://dx.doi.org/10.1080/002689797170031
|
[19]
|
Friedrich, U., Schnell, I., Brown, S.P., Lupulescu, A., Demco, D.E. and Spiess, H.W. (1998) Spinning-Sideband Patterns in Multiple-Quantum Magic-Angle Spinning NMR Spectroscopy. Molecular Physics, 95, 1209-1227. http://dx.doi.org/10.1080/00268979809483252
|
[20]
|
Boender, G.J., Vega, S. and De Groot, H.J.M. (2000) Quantized Field Description of Rotor Frequency-Driven Dipolar Recoupling. Journal of Chemical Physics, 112, 1096-1106. http://dx.doi.org/10.1063/1.480664
|
[21]
|
Ernst, M., Samoson, A. and Meier, B.H. (2005) Decoupling and Recoupling Using Continuous Waves Irradiation in Magic-Angle-Spinning Solid-State NMR: A Unified Description Using Bimodal Floquet Theory. Journal of Chemical Physics, 123, Article ID: 064102. http://dx.doi.org/10.1063/1.1944291
|
[22]
|
Ding, S. and McDowell, C.A. (1998) The Equivalence between Floquet Formalism and the Multi-Step Approach in Computing the Evolution Operator of a Periodical Time-Dependent Hamiltonian. Chemical Physics Letters, 288, 230-234. http://dx.doi.org/10.1016/S0009-2614(98)00307-8
|
[23]
|
Buishvili, L.L., Volzhan, E.B. and Menabde, M.G. (1981) Higher Approximations in the Theory of the Average Hamiltonian. Theoretical and Mathematical Physics, 46, 166-173. http://dx.doi.org/10.1007/BF01030852
|
[24]
|
Emetere, M.E. (2014) Analytical Solutions of Three Dimensional Time-Dependent Shrodinger Equation Using Bloch NMR Approach for NMR Studies. Applied Mathematical Sciences, 8, 2753-2762. http://dx.doi.org/10.12988/ams.2014.4012
|
[25]
|
Lee, Y.K., Kurur, N.D., Helmle, M., Johannessen, O.G., Nielsen, N.C. and Levitt, M.H. (1995) Efficient Dipolar Recoupling in the NMR of Rotating Solids. A Sevenfold Symmetric Radiofrequency Pulse Sequence. Chemical Physical Letters, 242, 304-309. http://dx.doi.org/10.1016/0009-2614(95)00741-L
|
[26]
|
Leforestier, C., Bisseling, R.H., Cerjan, C., Feit, M.D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H.-D., Lipkin, N., Roncero, O. and Kosloff, R. (1991) A Comparison of Different Propagation Schemes for the Time Dependent Schrodinger Equation. Journal of Computational Physics, 94, 59-80. http://dx.doi.org/10.1016/0021-9991(91)90137-A
|
[27]
|
Haeberlen, U. and Waugh, J.S. (1968) Coherent Averaging Effects in Magnetic Resonance. Physical Review, 175, 453-467. http://dx.doi.org/10.1103/PhysRev.175.453
|
[28]
|
Floquet, G. (1883) Sur les Equations Differentielles Lineaires a Coefficients Periodiques. Annales Scientifics de l’Ecole Normale Superieur, 12, 47-88. http://eudml.org/doc/80895
|
[29]
|
Shirley, J.H. (1965) Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time. Physical Review, 138, B979-B987. http://dx.doi.org/10.1103/PhysRev.138.B979
|
[30]
|
Maricq, M.M. (1982) Application of Average Hamiltonian Theory to the NMR of Solids. Physical Review B25, 6622-6632. http://dx.doi.org/10.1103/PhysRevB.25.6622
|
[31]
|
Zur, Y., Levitt, M.H. and Vega, S. (1983) Multiphoton NMR Spectroscopy on a Spin System with I=1/2. Journal of Chemical Physics, 78, 5293. http://dx.doi.org/10.1063/1.445483
|
[32]
|
Madhu, P.K. and Kurur, N.D. (2006) Fer Expansion for Effective Propagators and Hamiltonians in NMR. Chemical Physical Letters, 418, 235-238. http://dx.doi.org/10.1016/j.cplett.2005.10.134
|
[33]
|
Fer, F. (1958) Bulletin de la Classe des Sciences. Academie Royalede Belgique, 44, 818-829.
|
[34]
|
Mananga, E.S. and Charpentier, T. (2011) Introduction of the Floquet-Magnus Expansion in Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Chemical Physics, 135, Article ID: 044109. http://dx.doi.org/10.1063/1.3610943
|
[35]
|
Blanes, S., Casas, F., Oteo, J.A. and Ros, J. (2009) The Magnus Expansion and Some of Its Applications. Physics Reports, 470, 151-238. http://dx.doi.org/10.1016/j.physrep.2008.11.001
|
[36]
|
Casas, F., Oteo, J.A. and Ros, J. (2001) Floquet Theory: Exponential Perturbative Treatment. Journal of Physics A: Mathematical and General, 34, 3379-3388. http://dx.doi.org/10.1088/0305-4470/34/16/305
|
[37]
|
Dumont, R.S., Jain, S. and Bain, A. (1997) Simulation of Many-Spin System Dynamics via Sparse Matrix Methodology. Journal of Chemical Physics, 106, 5928. http://dx.doi.org/10.1063/1.473258
|
[38]
|
Scholz, I., Meier, B.H. and Ernst, M. (2007) Operator-Based Triple-Mode Floquet Theory in Solid-State NMR. Journal of Chemical Physics, 127, Article ID: 204504. http://dx.doi.org/10.1063/1.2800319
|
[39]
|
Suli, E. and Mayers, D. (2003) An Introduction to Numerical Analysis. Cambridge University Press, Cambridge.
|
[40]
|
Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions. Dover Publications, Dover.
|
[41]
|
Iserles, A. (2001) On Cayley-Transform Methods for the Discretization of Lie-Group Equations. Foundations on Computational Mathematics, 1, 129-160. http://dx.doi.org/10.1007/s102080010003
|
[42]
|
Chu, M.T. and Morris, L.K. (1988) Isospectral Flows and Abstract Matrix Factorization. Society for Industrial and Applied Mathematics Journal of Numerical Analysis, 25, 1383-1391. http://dx.doi.org/10.1137/0725080
|
[43]
|
Leimkuhler, J.B. and Van Vleck, E.S. (1997) Orthosymplectic Integration of Linear Hamiltonian System. Numerical Mathematics, 77, 269-282. http://dx.doi.org/10.1007/s002110050286
|
[44]
|
Lewis, D. and Simo, J.C. (1994) Conserving Algorithms for the Dynamics of Hamiltonian Systems on Lie Groups. Journal of Nonlinear Science, 4, 253-299. http://dx.doi.org/10.1007/BF02430634
|
[45]
|
Abragam, A. (1961) The Principle of Nuclear Magnetism. Clarendon Press, Oxford.
|
[46]
|
Ben-Reuven, A. and Rabin, Y. (1979) Theory of Resonance Scattering and Absorption of Strong Coherent Radiation by Thermally Relaxing Multi-Level Atomic Systems. Physical Review A, 19, 2056-2073. http://dx.doi.org/10.1103/PhysRevA.19.2056
|
[47]
|
Mananga, E.S. (2014) Future Theoretical Approaches in Nuclear Magnetic Resonance. Journal of Modern Physics, 5, 145-148.
|
[48]
|
Raleigh, D.P., Levitt, M.H. and Griffin, R.G. (1988) Rotational Resonance in Solid State NMR. Chemical Physics Letters, 146, 71-76. http://dx.doi.org/10.1016/0009-2614(88)85051-6
|
[49]
|
Hohwy, M., Rienstra, C.M., Jaroniec, C.P. and Griffin, R.G. (1999) Fivefold Symmetric Homonuclear Dipolar Recoupling in Rotating Solids: Application to Double Quantum Spectroscopy. Journal of Chemical Physics, 110, 7983. http://dx.doi.org/10.1063/1.478702
|
[50]
|
Ishii, Y., Terao, T. and Kainosho, M. (1996) Relayed Anisotropy Correlation NMR: Determination of Dihedral Angles in Solids. Chemical Physics Letters, 265, 133-140. http://dx.doi.org/10.1016/0009-2614(96)00426-5
|
[51]
|
Ishii, Y., Hirao, K., Terao, T., Terauchi, T., Oba, M., Nishiyama, K. and Kainosho, M. (1998) Determination of Peptide Angles in Solids by Relayed Anisotropy Correlation NMR. Solid State Nuclear Magnetic Resonance, 11, 169-175. http://dx.doi.org/10.1016/S0926-2040(98)00038-1
|
[52]
|
Mananga, E.S. (2013) Applications of Floquet-Magnus Expansion, Average Hamiltonian Theory and Fer Expansion to Study Interactions in Solid State NMR When Irradiated with the Magic-Echo Sequence. Solid State Nuclear Magnetic Resonance, 55-56, 54-62. http://dx.doi.org/10.1016/j.ssnmr.2013.08.002
|
[53]
|
Mananga, E.S. (2013) Criteria to Average Out the Chemical Shift Anisotropy in Solid-State NMR When Irradiated with BABA I, BABA II, and C7 Radiofrequency Pulse Sequences. Solid State Nuclear Magnetic Resonance, 55-56, 63-72. http://dx.doi.org/10.1016/j.ssnmr.2013.08.003
|
[54]
|
Mananga, E.S., Reid, A.E. and Charpentier, T. (2012) Efficient Theory of Dipolar Recoupling in Solid-State Nuclear Magnetic Resonance of Rotating Solids using Floquet-Magnus Expansion: Application on BABA and C7 Radiofrequency Pulse Sequences. Solid State Nuclear Magnetic Resonance, 41, 32-47. http://dx.doi.org/10.1016/j.ssnmr.2011.11.004
|
[55]
|
Mananga, E.S. and Reid, A.E. (2013) Investigation of the Effect of Finite Pulse Errors on the BABA Pulse Sequence using the Floquet-Magnus Expansion Approach. Molecular Physics, 111, 243-257. http://dx.doi.org/10.1080/00268976.2012.718379
|
[56]
|
Purcell, E.M., Torrey, H.C. and Pound, R.V. (1946) Resonance Absorption by Nuclear Magnetic Moments in a Solid. Physical Review, 69, 37-38. http://dx.doi.org/10.1103/PhysRev.69.37
|
[57]
|
Bloch, F., Hansen, W.W. and Packard, M. (1946) The Nuclear Induction Experiment. Physical Review, 70, 474-485. http://dx.doi.org/10.1103/PhysRev.70.474
|
[58]
|
Brinkmann, A., Eden, M. and Levitt, M.H. (2000) Synchronous Helical Pulse Sequences in Magic-Angle Spinning Nuclear Magnetic Resonance: Double Quantum Recoupling of Multiple-Spin Systems. Journal of Chemical Physics, 112, 8539. http://dx.doi.org/10.1063/1.481458
|
[59]
|
Hohwy, M., Jakobsen, H.J., Eden, M., Levitt, M.H. and Nielsen, N.C. (1998) Broadband Dipolar Recoupling in the Nuclear Magnetic Resonance of Rotating Solids: A Compensated C7 Pulse Sequence. Journal of Chemical Physics, 108, 2686. http://dx.doi.org/10.1063/1.475661
|
[60]
|
Brinkmann, A. and Levitt, M.H. (2001) Symmetry Principles in the Nuclear Magnetic Resonance of Spinning Solids: Heteronuclear Recoupling by Generalized Hatmann-Hahn Sequences. Journal of Chemical Physics, 115, 357. http://dx.doi.org/10.1063/1.1377031
|
[61]
|
Carravetta, M., Eden, M., Zhao, X., Brinkmann, A. and Levitt, M.H. (2000) Symmetry Principles for the Design of Radiofrequency Pulse Sequences in the Nuclear Magnetic Resonance of Rotating Solids. Chemical Physical Letters, 321, 205-215. http://dx.doi.org/10.1016/S0009-2614(00)00340-7
|
[62]
|
Tycko, R. (2007) Symmetry-Based Constant-Time Homonuclear Dipolar Recoupling in Solid-State NMR. Journal of Chemical Physics, 126, Article ID: 064506. http://dx.doi.org/10.1063/1.2437194
|
[63]
|
Tycko, R. (2008) Lecture Notes for the First Winter School on Biomolecular Solid State NMR, Stowe, Vermont, 20-25 January 2008.
|
[64]
|
Eden, M. and Levitt, M.H. (1999) Pulse Sequence Symmetries in Nuclear Magnetic Resonance of Spinning Solids: Application to Heteronuclear Decoupling. Journal of Chemical Physics, 111, 1511. http://dx.doi.org/10.1063/1.479410
|
[65]
|
Sanctuary, B.C. and Cole, H.B.R. (1987) Multipole Theory of Composite Pulses. Journal of Magnetic Resonance, 71, 106-115. http://dx.doi.org/10.1016/0022-2364(87)90131-4
|
[66]
|
Levitt, M.H. (1982) Symmetrical Composite Pulse Sequences for NMR Population Inversion. I. Compensation of Radiofrequency Field Inhomogeneity. Journal of Magnetic Resonance, 48, 234-264. http://dx.doi.org/10.1016/0022-2364(82)90275-X
|
[67]
|
Tycko, R., Cho, H.M., Schneider, E. and Pines, A. (1985) Composite Pulses without Phase Distortion. Journal of Magnetic Resonance, 61, 90-101. http://dx.doi.org/10.1016/0022-2364(85)90270-7
|
[68]
|
Leskes, M., Madhu, P.K. and Vega, S. (2010) Floquet Theory in Solid-State Nuclear Magnetic Resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 55, 345-380. http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
|
[69]
|
Scholz, I., Van Beek, J.D. and Ernst, M. (2010) Operator-Based Floquet Theory in Solid-State NMR. Solid State Nuclear Magnetic Resonance, 37, 39-59. http://dx.doi.org/10.1016/j.ssnmr.2010.04.003
|
[70]
|
Evans, W. (1968) On Some Applications of Magnus Expansion in Nuclear Magnetic Resonance. Annals of Physics, 48, 72-93. http://dx.doi.org/10.1016/0003-4916(68)90270-4
|
[71]
|
Goldman, M., Grandinetti, P.J., Llor, A., Olejniczak, Z., Sachleben, J.R. and Zwanziger, J.W. (1992) Theoretical Aspects of Higher-Order Truncations in Solid-State Nuclear Magnetic Resonance. Journal of Chemical Physics, 97, 8947. http://dx.doi.org/10.1063/1.463321
|
[72]
|
Tycko, R. (2008) Introduction to Special Topic: New Developments in Magnetic Resonance. Journal of Chemical Physical, 128, Article ID: 052101. http://dx.doi.org/10.1063/1.2833958
|
[73]
|
Mananga, E.S., Roopchand, R., Rumala, Y.S. and Boutis, G.S. (2007) On the Application of Magic Echo Cycles for Quadrupolar Echo Spectroscopy of Spin-1 Nuclei. Journal of Magnetic Resonance, 185, 28-37. http://dx.doi.org/10.1016/j.jmr.2006.10.016
|
[74]
|
Mananga, E.S., Rumala, Y.S. and Boutis, G.S. (2006) Finite Pulse Width Artifact Suppression in Spin-1 Quadrupolar Echo Spectra by Phase Cycling. Journal of Magnetic Resonance, 181, 296-303. http://dx.doi.org/10.1016/j.jmr.2006.05.015
|
[75]
|
Mananga, E.S., Hsu, C.D., Ishmael, S., Islam, T. and Boutis, G.S. (2008) Probing the Validity of Average Hamiltonian Theory for Spin I=1, 3/2 and 5/2 Nuclei by Analyzing a Simple Two-Pulse Sequence. Journal of Magnetic Resonance, 193, 10-22. http://dx.doi.org/10.1016/j.jmr.2008.03.014
|
[76]
|
Levitt, M.H. (2008) Symmetry in the Design of NMR Multiple-Pulse Sequences. Journal of Chemical Physics, 128, Article ID: 052205. http://dx.doi.org/10.1063/1.2833958
|
[77]
|
Vandersypen, L.M.K. and Chuang, I.L. (2004) NMR Techniques for Quantum Control and Computation. Review of Modern Physics, 76, 1037-1069. http://dx.doi.org/10.1103/RevModPhys.76.1037
|
[78]
|
Hu, B., Delevoye, L., Lafon, O., Trebosc, J. and Amoureux, J.P. (2009) Double-Quantum NMR Spectroscopy of 31P Species Submitted to Very Large CSAs. Journal of MagneticResonance, 200, 178-188. http://dx.doi.org/10.1016/j.jmr.2009.06.020
|
[79]
|
Scholz, I., Van Beek, J.D. and Ernst, M. (2010) Operator-Based Floquet Theory in Solid-State NMR. Solid State Nuclear Magnetic Resonance, 37, 39-59. http://dx.doi.org/10.1016/j.ssnmr.2010.04.003
|
[80]
|
Leskes, M., Akbey, U., Oschkinat, H., van Rossum, B.-J. and Vega, S. (2011) Radio Frequency Assisted Homonuclear Recoupling—A Floquet Description of Homonuclear Recoupling via Surrounding Heteronuclei in Fully Protonated to Fully Deuterated Systems. Journal of Magnetic Resonance, 209, 207-219. http://dx.doi.org/10.1016/j.jmr.2011.01.015
|
[81]
|
Mehring, M. (1983) Principles of High Resolution NMR in Solids. Springer-Verlag, New York.
|
[82]
|
Schmidt-Rohr, K. and Spiess, H.W. (1996) Multidimensional Solid-State NMR and Polymers. Academic Press, London.
|
[83]
|
Schmidt, A. and Vega, S. (1992) The Floquet Theory of Nuclear Magnetic Resonance Spectroscopy of Single Spins and Dipolar Coupled Spin Pairs in Rotating Solids. Journal of Chemical Physics, 96, 2655. http://dx.doi.org/10.1063/1.462015
|
[84]
|
Ramachandran, R. and Griffin, R.G. (2005) Multipole-Multimode Floquet Theory in Nuclear Magnetic Resonance. Journal of Chemical Physics, 122, Article ID: 164502. http://dx.doi.org/10.1063/1.1875092
|
[85]
|
Sanctuary, B.C. (1976) Multipole Operators for an Arbitrary Number of Spins. Journal of Chemical Physics, 64, 4352. http://dx.doi.org/10.1063/1.432104
|
[86]
|
Sanctuary, B.C. (1983) Multipole NMR. Molecular Physics, 48, 1155-1176. http://dx.doi.org/10.1080/00268978300100841
|
[87]
|
Ramesh, R. and Krishnan, M.S. (2001) Effective Hamiltonians in Floquet Theory of Magic Angle Spinning Using van Vleck Transformation. Journal of Chemical Physics, 114, 5967. http://dx.doi.org/10.1063/1.1354147
|
[88]
|
Blanes, S., Casas, F., Oteo, J.A. and Ros, J. (1998) Magnus and Fer Expansions for Matrix Differential Equations: The Convergence Problem. Journal of Physics A: Mathematical and General, 31, 259-268. http://dx.doi.org/10.1088/0305-4470/31/1/023
|
[89]
|
Haeberlen, U. (1976) Advance in Magnetic Resonance. Supplement 1, Academic Press, New York.
|
[90]
|
Casa, F., Oteo, J.A. and Ros, J. (1991) Lie Algebraic Approach to Fer’s Expansion for Classical Hamiltonian Systems. Journal of Physics A: Mathematical and General, 24, 4037-4046. http://dx.doi.org/10.1088/0305-4470/24/17/020
|
[91]
|
Feike, M., Demco, D.E., Graf, R., Gottwald, J., Hafner, S. and Spiess, H.W. (1996) Broadband Multiple-Quantum NMR Spectroscopy. Journal of Magnetic Resonance A, 122, 214-221. http://dx.doi.org/10.1006/jmra.1996.0197
|
[92]
|
Mananga, E.S. (2013) Progress in Spin Dynamics Solid-State Nuclear Magnetic Resonance with the Application of Floquet-Magnus Expansion to Chemical Shift Anisotropy. Solid State Nuclear Magnetic Resonance, 54, 1-7. http://dx.doi.org/10.1016/j.ssnmr.2013.04.001
|
[93]
|
Tal-Ezer, H. and Kosloff, R. (1984) An Accurate and Efficient Scheme for Propagating the Time Dependent Schrodinger Equation. Journal of Chemical Physics, 81, 3967. http://dx.doi.org/10.1063/1.448136
|
[94]
|
Moler, C.B. and Van Loan, C.F. (2003) Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. Society for Industrial and Applied Mathematics Review, 45, 3-49. http://dx.doi.org/10.1137/S00361445024180
|
[95]
|
Rivlin, T.J. (1990) Chebychev Polynomials. 2nd Edition, Wiley, New York.
|
[96]
|
Blanes, S., Casas, F. and Ros, J. (2002) High Order Optimized Geometric Integrators for Linear Differential Equations. BIT, 42, 262-284.
|
[97]
|
Lopez, L. and Politi, T. (2001) Applications of the Cayley Approach in the Numerical Solution of Matrix Differential Systems on Quadratic Groups. Applied Numerical Mathematics, 36, 35-55. http://dx.doi.org/10.1016/S0168-9274(99)00049-5
|