Thermal response and optical absorptance of metals under femtosecond laser irradiation
Anatoliy Y Vorobyev, Chunlei Guo
DOI: 10.4236/ns.2011.36068   PDF   HTML     5,760 Downloads   11,684 Views   Citations


A detailed study on correlation between residual thermal response of a sample and its optical absorptance change due to laser-induced sur-face structural modifications in multi-shot fem-tosecond laser irradiation is performed. Ex-periments reveal an overall enhancement for residual thermal coupling and absorptance in air. Surprisingly, residual thermal coupling in air shows a non-monotonic dependence on pulse number and reaches a minimum value after a certain number of pulses, while these behaviors are not seen in absorptance. In vacuum, how-ever, both suppression and enhancement are seen in residual energy coupling although ab-sorptance is always enhanced. From these ob-servations, it appears that air plasma plays a dominant role in thermal coupling at a relatively low number of applied pulses, while the forma-tion of craters plays a dominant role at a high number of pulses.

Share and Cite:

Vorobyev, A. and Guo, C. (2011) Thermal response and optical absorptance of metals under femtosecond laser irradiation. Natural Science, 3, 488-495. doi: 10.4236/ns.2011.36068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Pronko, P.P., Dutta, S.K., Squier, J., Rudd, J.V., Du, D. and Mourou G. (1995) Machining of sub-micron holes using a femtosecond laser at 800 nm. Optics Communications, 114, 106-110. doi:10.1016/0030-4018(94)00585-I
[2] Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. and Tunnermann, A. (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63, 109-115. doi:10.1007/BF01567637
[3] Pereira, A., Cros, A., Delaporte, P., Georgiou, S., Manousaki, A., Marine, W. and Sentis, M. (2004) Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere. Applied Physics A, 79, 1433-1437. doi:10.1007/s00339-004-2804-x
[4] Nolte, S., Chichkov, B.N., Welling, H., Shani, Y., Liebermann, K. and Terkel, H. (1999) Nanostructuring with spatially localized femtosecond laser pulses. Optics Letters, 24, 914-916. doi:10.1364/OL.24.000914
[5] Amoruso, S., Ausanio, G., Bruzzese, R., Vitello, M. and Wang X. (2005) Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum. Physical Review B, 71, 033406. doi:10.1103/PhysRevB.71.033406
[6] Koch, J., Korte, F., Bauer, T., Fallnich, C., Ostendorf, A. and Chichkov, B.N. (2005) Nanotexturing of gold films by femtosecond laser-induced melt dynamics. Applied Physics A, 81, 325-328. doi:10.1007/s00339-005-3212-6
[7] Vorobyev, A.Y. and Guo, C. (2006) Femtosecond laser nanostructuring of metals. Optics Express, 14, 2164-2169. doi:10.1364/OE.14.002164
[8] Wu, C., Crouch, C.H., Zhao, L., Carey, J.E., Younkin, R., Levinson, J.A., Mazur, E., Farrell, R.M., Gothoskar, P. and Karger, A. (2001) Near-unity below-band-gap absorption by microstructured silicon. Applied Physics Letters, 78, 1850-1852. doi:10.1063/1.1358846
[9] Vorobyev, A.Y. and Guo, C. (2005) Enhanced absorptance of gold following multi-pulse femtosecond laser ablation. Physical Review B, 72, 195422. doi:10.1103/PhysRevB.72.195422
[10] Vorobyev, A.Y. and Guo, C. (2008) Colorizing metals with femtosecond laser pulses. Applied Physics Letters, 92, 041914. doi:10.1063/1.2834902
[11] Kaakkunen, J.J.J., Paivasaari, K., Kuittinen, M. and Jaaskelainen, T. (2009) Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation, Applied Physics A, 94, 215-220. doi:10.1007/s00339-008-4895-2
[12] Paivasaari, K., Kaakkunen, J. J. J., Kuittinen, M. and Jaaskelainen, T. (2007) Enhanced optical absorptance of metals using interferometric femtosecond ablation. Optics Express, 15, 13838-13843. doi:10.1364/OE.15.013838
[13] Ausano G., Barone, A.C., Iannotti, V., Lanotte, L., Amoruso, S., Bruzzese, R. and Vitiello M. (2004) Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation. Applied Physics Letters, 85, 4103-4105. doi:10.1063/1.1815065
[14] Baldacchini, T., Carey, J.E., Zhou, M. and Mazur, E. (2006) Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser. Langmuir, 22, 4917-4919. doi:10.1021/la053374k
[15] Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, Tzanetakis, R., P. and Fotakis, C. (2006) Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology, 17, 3234-3238. doi:10.1088/0957-4484/17/13/026
[16] Vorobyev, A.Y. and Guo C. (2009) Metal pumps liquid uphill. Applied Physics Letters, 94, 224102. doi:10.1063/1.3117237
[17] Fadeeva, E., Schlie, S., Koch, J., Chichkov, B.N., Vorobyev, A.Y., Guo, C. (2009) Femtosecond laser-induced surface structures on platinum and their effects on hydrophobicity and fibroblast cell proliferation. Contact Angle, Wettability and Adhesion, 6, 163-171.
[18] Qian, F., Cracuin, V., Singh, R.K., Dutta, S.D. and Pronko, P.P. (1999) High intensity femtosecond laser deposition of diamond-like carbon films, Journal of Applied Physics, 86, 2281-2290. doi:10.1063/1.371043
[19] Luke, J.R., Phipps, C.R., McDuff, G.G. (2003) Laser plasma thruster. Applied Physics A, 77, 343-348.
[20] Polte, T. R., Shen, M., Karavitis, J., Montoya, M., Pendse, J., Xia, S., Mazur, E. and Ingber, D. E. (2007) Nanostructured magnetizeable materials that switch cells between life and death. Biomaterials, 28, 2783-2790. doi:10.1016/j.biomaterials.2007.01.045
[21] Anisimov S. I. and Luk'yanchuk, B. S. (2002) Selected problems of laser ablation theory. Physics – Uspekhi, 45, 293-324. doi:10.1070/PU2002v045n03ABEH000966
[22] Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I.V., Bulgakova, N.M. and Campbell, E.E.B. (2002) Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation, Physical Review Letters, 88, 097603. doi:10.1103/PhysRevLett.88.097603
[23] Bulgakova, N.M., Stoian, R., Rosenfeld, A., Hertel, I.V. and Campbell, E.E.B. (2004) Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Physical Review B, 69, 054102. doi:10.1103/PhysRevB.69.054102
[24] Ivanov, D.S. and Zhigilei, L.V. (2003) Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Physical Review B, 68, 064114. doi:10.1103/PhysRevB.68.064114
[25] Zhigilei, L.V., Lin, Z. and Ivanov, D.S. (2009) Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion. The Journal of Physical Chemistry C, 113, 11892- 11906. doi:10.1021/jp902294m
[26] Povarnitsyn, M.E., Itina, T.E., Sentis, M., Khishchenko, K.V. and Levashov, P.R. (2007) Material decomposition mechanisms in femtosecond laser interactions with metals. Physical Review B, 75, 235414. doi:10.1103/PhysRevB.75.235414
[27] Gamaly, E.G., Rode, A.V., Luther-Davies, B. and Tichonchuk, V.T. (2002) Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of Plasmas, 9, 949-957. doi:10.1063/1.1447555
[28] Vorobyev, A.Y., Kuzmichev, V.M., Kokody, N.G., Kohns, P., Dai, J. and Guo, C. (2006) Residual thermal effects in Al following single ns- and fs-laser pulse ablation. Applied Physics A, 82, 357-362. doi:10.1007/s00339-005-3412-0
[29] Vorobyev, A.Y. and Guo, C. (2005) Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation. Applied Physics Letters, 86, 011916. doi:10.1063/1.1844598
[30] Kaye, G.W.C. and Laby, T.H. (1956) Tables of Physical and Chemical Constants. 11th Edition, Longmans, London.
[31] McKay, J. A., Bleach, R. D., Nagel, D. J., Schriemph, J. T., Hall, R. B., Pond, C. R. and Manlief, S. K. (1979) Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics. Journal of Applied Physics, 50, 3231-3240. doi:10.1063/1.326361
[32] Vorobyev, A.Y. (1985) Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum. Soviet Journal of Quantum Electronics, 15, 490-493. doi:10.1070/QE1985v015n04ABEH006963
[33] Milchberg, H. M., Clark, T. R., Durfee, C. G., Antonsen, T. M. and Mora, P. (1996) Development and applications of a plasma waveguide for intense laser pulses. Physics Plasmas, 3, 2149-2155. doi:10.1063/1.871668
[34] Bulgakova, N.M., Zhukov, V.P., Vorobyev, A.Y. and Guo, C. (2008) Modeling of residual thermal effect in femtosecond laser ablation of metals. role of gas environment. Applied Physics A, 92, 883-889. doi:10.1007/s00339-008-4568-1
[35] Fujimoto, J. G., Liu, J.M. and Ippen, E.P. (1984) Femtosecond Laser interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures. Applied Physics Letters, 53, 1837-1840. doi:10.1103/PhysRevLett.53.1837
[36] K?nig, J., Nolte, S. and Tünnermann, A. (2005) Plasma evolution during metal ablation with ultrashort laser pulses. Optics Express, 13, 10597-10607. doi:10.1364/OPEX.13.010597
[37] Breitling, D., Ruf, A., Berger, P.W., Dausinger, F.H., Klimentov, S.M., Pivovarov, P.A., Kononenko, T.V. and Konov, V.I. (2003) Plasma effects during ablation and drilling using pulsed solid-state lasers. Proceedings of SPIE, 5121, 24-33. doi:10.1117/12.513766
[38] Mao, S.S., Mao, X., Greif, R. and Russo, R.E. (2000) Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation. Applied Physics Letters, 76, 31-33. doi:10.1063/1.125646
[39] McKay, J.A., Schriemph, J.T., Cronburg, T.L., Eninger, J.E. and Woodroffe, J.A., (1980) Pulsed CO2 laser interaction with a metal surface at oblique incidence. Applied Physics Letters, 36, 125-127. doi:10.1063/1.91403

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.