Conversion of ethanol to acetone & other produces using nano-sensor SnO2(110): Ab initio DFT
Leila Mahdavian
.
DOI: 10.4236/ns.2011.36065   PDF    HTML     7,633 Downloads   15,051 Views   Citations

Abstract

The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.

Share and Cite:

Mahdavian, L. (2011) Conversion of ethanol to acetone & other produces using nano-sensor SnO2(110): Ab initio DFT. Natural Science, 3, 471-477. doi: 10.4236/ns.2011.36065.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Voort, P.V.D., Baltes, M., Vansant, E.F. and White, M.G. (1997) The uses of polynuclear metal complexes to develop designed dispersions of supported metal oxides: part II. Catalytic Properties. Interface Science, 5, 199- 206.
[2] Moseley, P.T., Norris, J. and Williams, De. Eds., (1991) Techniques and mechanisms in gas sensing. Adam Hilger.
[3] Gole, J.L., and Whitey, M.G. (2001) Nanocatalysis: selective conversion of ethanol to acetaldehyde using mono-atomically dispersed copper on silica nanospheres. Journal of Catalysis, 204, 249-252.
[4] Heilig, A., Barsan, N., Weimar, U., Schweizer–Berberich, M., opel, W.G¨ and Gardner, J.W. (1997) Gas identification by modulating temperatures of SnO2-based thick film sensors. Sensors and Actuators B: Chemical, 43, 45-51. doi:10.1016/S0925-4005(97)00096-8
[5] Jaegle, M., ollenstein, J.W¨., Meisinger, T., B¨ottner, H., M¨uller, G., Becker, Th. and Braunm¨uhl, Ch.B.V. (1999) Micromachined thin film gas sensors in temperature pulsed operation mode. Sensors and Actuators B: Chemical, 57, 130-134. doi:10.1016/S0925-4005(99)00074-X
[6] Faglia, G. (1998) Michromachined gas sensors operated by fast pulsed temperature mode for environmental pollutants. Proceedings 6th Micro Systems Technologies, VDE-Verlag, Berlin, pp. S703-S705.
[7] Hellmich, W., M¨uller, G., Braunm¨uhl, Ch.B.V., Doll, T and Eisele, I. (1997) Field effect- induced gas sensitivity changes in metal oxides. Sensors and Actuators B: Chemical, 43, 132-139. doi:10.1016/S0925-4005(97)00195-0
[8] Idriss, H.(2004) Ethanol Reactions over the Surfaces of Noble Metal/Cerium Oxide Catalysts. Platinum Metals Rev, 48,105-115. doi:10.1595/147106704X1603
[9] DMol3 and CASTEP. Molecular Simulations, San Diego. 1998.
[10] Rantala, T.T., Rantalab, T.S. and Lantto, V. (2000) Electronic structure of SnO2 (110) surface. Materials Science in Semiconductor Processing, 3, 103-107. doi:10.1016/S1369-8001(00)00021-4
[11] Gobernado-Mitre, I., Klassen, B., Aroca, R and DeSaja, J. A. (2005) Vibrational spectra and structure of perchlorinated metal-free phthalocyanine and lutetium bisphthalo-cyanine. Journal of Raman Spectroscopy, 24, 903-908.
[12] Zverev, V.V., Islamov, R.G., Islamova, F.Kh and Vakar, V.M. (1989) Photoelectron spectrum and quantum- chemical structural analysis of N-methyl-N-methoxydia- zene-N-oxide. Journal of Structural Chemistry, 30, 228- 233.
[13] Tiana, G., Sutto, L and Broglia, R.A. (2007) Statistical mechanics and its applications. Physical: A, 380, 241- 251.
[14] Mahdavian, L., Monajjemi, M. and Mangkorntong, N. (2009) Sensor response to alcohol and chemical mecha- nism of carbon nanotube gas sensors. Fullerenes, Nano- tubes and Carbon Nanostructures, 17, 484-495. doi:10.1080/15363830903130044
[15] Mangkorntong, N., Mahdavian, L., Mollaamin, F. and Monajjemi, M. (2008) Sensing of methanol and ethanol with nano-structured SnO2 (110) in gas phase: monte carlo simulation. Journal of Physical and Theoretical Chemistry (IAU.Iran), 4, 197-203.
[16] Bolzan, A.A., Fong, C., Kennedy, B.J. and Howard, C.J. (1997) Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Acta Crystallographica Section B: Structural Science, 53, 373-380. doi:10.1107/S0108768197001468
[17] Wang, N., Lin, H., Li, J., Zhang, L., Li, X., Wu, J. and Lin, Ch. (2003) Strong orange luminescence from a novel hexagonal ZnO nanosheet film grown on aluminum substrate by a simple wet-chemical approach. Journal of the American Ceramic Society, 90, 635-637. doi:10.1111/j.1551-2916.2006.01418.x
[18] Oviedo, J. and Gillan, M.J. (2000) Energetics and structure of stoichiometric. SnO2 surfaces studied by first-principles calculations. Surface Science, 463, 93- 101. doi:10.1016/S0039-6028(00)00612-9
[19] Mulheran, P.A. and Harding, J.H. (1992) The stability of SnO2 surfaces. Modelling and Simulation in Materials Science and Engineering, 1, 39-43. doi:10.1088/0965-0393/1/1/004
[20] Slater, B., Catlow, C.R., Gay, D.H., Williams, D.E. and Dusastre, V. (1999) Study of surface segregation of antimony on SnO2 surfaces by computer simulation tehniques. The Journal of Physical Chemistry B, 103, 10644-10650. doi:10.1021/jp9905528
[21] Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Yyappan, M.Me. (2003) Carbon nanotube sensors for gas and organic vapor detection. NanoLetters, 3, 929-933. doi:10.1021/nl034220x
[22] Liu, M., Shi, G., Zhang, L., Zhao, G. and Jin, L. (2008) Electrode modified with toluidine blue-doped silica nanoparticles, and its use for enhanced amperometric sensing of hemoglobin. Analytical Biochemistry, 391, 1951-1959.
[23] Fu, Q. and Liu, J. (2005) integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors. The Journal of Physical Chemistry B, 109, 13406-13408. doi:10.1021/jp0525686

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.