Upper Bound Estimation of Fractal Dimensions of Fractional Integral of Continuous Functions

DOI: 10.4236/apm.2015.51003   PDF   HTML   XML   2,967 Downloads   3,513 Views   Citations


Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.

Share and Cite:

Liang, Y. (2015) Upper Bound Estimation of Fractal Dimensions of Fractional Integral of Continuous Functions. Advances in Pure Mathematics, 5, 27-30. doi: 10.4236/apm.2015.51003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Liang, Y.S. (2010) Box Dimension of Riemann-Liouville Fractional Integral of Continuous Function of Bounded Variation. Nonlinear Analysis Series A: Theory, Method and Applications, 72, 2758-2761.
[2] Yao, K. and Liang, Y.S. (2010) The Upper Bound of Box Dimension of the Weyl-Marchaud Derivative of Self-Affine Curves. Analysis Theory and Application, 26, 222-227. http://dx.doi.org/10.1007/s10496-010-0222-9
[3] Liang, Y.S. and Su, W.Y. (2011) The Von Koch Curve and Its Fractional Calculus. Acta Mathematic Sinica, Chinese Series [in Chinese], 54, 1-14.
[4] Zhang, Q. and Liang, Y.S. (2012) The Weyl-Marchaud Fractional Derivative of a Type of Self-Affine Functions. Applied Mathematics and Computation, 218, 8695-8701.
[5] Falconer, J. (1990) Fractal Geometry: Mathematical Foundations and Applications. John Wiley Sons Inc., New York.
[6] Oldham, K.B. and Spanier, J. (1974) The Fractional Calculus. Academic Press, New York.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.