[1]
|
Pop, S.R., Grosan, T. and Pop, I. (2004) Radiation Effects on the Flow near the Stagnation Point of a Stretching Sheet. Technische Mechanik, 25, 100-106.
|
[2]
|
Sakiadis, B.C. (1961) Boundary Layer Behaviour on Continuous Solid Surfaces, II. The Boundary Layer on a Continuous Flat Surface. AIChE Journal, 7, 221-225. http://dx.doi.org/10.1002/aic.690070211
|
[3]
|
Crane, L.J. (1970) Flow past a Stretching Plate. Journal of Applied Mathematics and Physics (ZAMP), 21, 645-647.
http://dx.doi.org/10.1007/BF01587695
|
[4]
|
Gupta, P.S. and Gupta, A.S. (1977) Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing. Canadian Journal of Chemical Engineering, 55, 744-746. http://dx.doi.org/10.1002/cjce.5450550619
|
[5]
|
Chaim, T.C. (1995) Hydromagnetic Flow over a Surface Stretching with a Power-Law Velocity. International Journal of Engineering Science, 33, 429-435. http://dx.doi.org/10.1016/0020-7225(94)00066-S
|
[6]
|
Vajravelu, K. (2001) Viscous Flow over a Nonlinearly Stretching Sheet. Applied Mathematics and Computation, 124, 281-288. http://dx.doi.org/10.1016/S0096-3003(00)00062-X
|
[7]
|
Cortell, R. (2007) Viscous Flow and Heat Transfer over a Nonlinearly Stretching Sheet. Applied Mathematics and Computation, 184, 864-873. http://dx.doi.org/10.1016/j.amc.2006.06.077
|
[8]
|
Abbas, Z. and Hayat, T. (2008) Radiation Effects on MHD Flow in a Porous Space. International Journal of Heat and Mass Transfer, 51, 1024-1033. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.05.031
|
[9]
|
Hayat, T., Hussain, Q. and Javed, T. (2009) The Modified Decomposition Method and Padé Approximants for the MHD Flow over a Non-Linear Stretching Sheet. Nonlinear Analysis: Real World Applications, 10, 966-973.
http://dx.doi.org/10.1016/j.nonrwa.2007.11.020
|
[10]
|
Ghotbi, A.R. (2009) Homotopy Analysis Method for Solving the MHD Flow over a Non-Linear Stretching Sheet. Communications in Nonlinear Science and Numerical Simulation, 14, 2653-2663.
|
[11]
|
Mehmood, A., Munawar, S. and Ali, A. (2010) Comments to: ‘‘Homotopy Analysis Method for Solving the MHD Flow over a Non-Linear Stretching Sheet (Commun. Nonlinear Sci. Numer. Simul. 14 (2009) (2653-2663)”. Communications in Nonlinear Science and Numerical Simulation, 15, 4233-4240.
http://dx.doi.org/10.1016/j.cnsns.2009.12.039
|
[12]
|
Pavlov, K.B. (1974) Magnetohydrodynamic Flow of an Incompressible Viscous Fluid Caused by Deformation of a Surface. Magnitnaya Gidrodinamika, 4, 146-147.
|
[13]
|
Javed, T., Abbas, Z., Sajid, M. and Ali, N. (2011) Heat Transfer Analysis for a Hydromagnetic Viscous Fluid over a Non-Linear Shrinking Sheet. International Journal of Heat and Mass Transfer, 54, 2034-2042.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.12.025
|
[14]
|
Fathizadah, M., Madani, M., Khan, Y., Faraz, N., Y?ld?r?m, A. and Tutkun, S. (2013) An Effective Modification of the Homotopy Perturbation Method for MHD Viscous Flow over a Stretching Sheet. Journal of King Saud University-Science, 25, 107-113. http://dx.doi.org/10.1016/j.jksus.2011.08.003
|
[15]
|
Hill, J.M. (1982) Solution of Differential Equations by Means of One-Parameter Groups. Pitman Publishing Company, Boston.
|
[16]
|
Seshadri, R. and Na, T.Y. (1985) Group Invariance in Engineering Boundary Value Problems. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4612-5102-6
|
[17]
|
Olver, P.J. (1986) Applications of Lie Groups to Differential Equations. Springer-Verlag, New York.
|
[18]
|
Ibragimov, N.H. (1999) Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York.
|
[19]
|
Boutros, Y.Z., Abd-el-Malek, M.B., Badran, N.A. and Hassan, H.S. (2006) Lie-Group Method for Unsteady Flows in a Semi-Infinite Expanding or Contracting Pipe with Injection or Suction through a Porous Wall. Journal of Computational and Applied Mathematics, 197, 465-494. http://dx.doi.org/10.1016/j.cam.2005.11.031
|
[20]
|
Boutros, Y.Z., Abd-el-Malek, M.B., Badran, N.A. and Hassan, H.S. (2007) Lie-Group Method of Solution for Steady Two-Dimensional Boundary-Layer Stagnation-Point Flow towards a Heated Stretching Sheet Placed in a Porous Medium. Meccanica, 41, 681-691. http://dx.doi.org/10.1007/s11012-006-9014-x
|
[21]
|
Boutros, Y.Z., Abd-el-Malek, M.B., Badran, N.A. and Hassan, H.S. (2007) Lie-Group Method Solution for Two-Dimensional Viscous Flow between Slowly Expanding or Contracting Walls with Weak Permeability. Applied Mathematical Modelling, 31, 1092-1108. http://dx.doi.org/10.1016/j.apm.2006.03.026
|
[22]
|
Abd-el-Malek, M.B., Badran, N.A. and Hassan, H.S. (2007) Lie-Group Method for Predicting Water Content for Immiscible Flow of Two Fluids in a Porous Medium. Applied Mathematical Sciences, 1, 1169-1180.
|
[23]
|
Abd-el-Malek, M.B. and Hassan, H.S. (2010) Symmetry Analysis for Steady Boundary-Layer Stagnation-Point Flow of Rivlin-Ericksen Fluid of Second Grade Subject to Suction. Nonlinear Analysis: Modelling and Control, 15, 379-396.
|
[24]
|
Abd-el-Malek, M.B. and Hassan, H.S. (2010) Solution of Burgers’ Equation with Time-Dependent Kinematic Viscosity via Lie-Group Analysis. Proceedings of the 5th International Workshop “Group Analysis of Differential Equations & Integrable Systems”, Protaras-Cyprus, 6-10 June 2010, 6-14.
|
[25]
|
Abd-el-Malek, M.B., Badran, N.A., Hassan, H.S. and Abbas, H.H. (2013) New Solutions for Solving the Problem of Particle Trajectories in Linear Deep-Water Waves via Lie-Group Method. Applied Mathematics and Computation, 219, 11365-11375. http://dx.doi.org/10.1016/j.amc.2013.05.059
|
[26]
|
Abd-el-Malek, M.B. and Hassan, H.S. (2014) Lie Group Method for Solving the Problem of Fission Product Behavior in Nuclear Fuel. Mathematical Methods in the Applied Sciences, 37, 420-427. http://dx.doi.org/10.1002/mma.2802
|
[27]
|
Hassan, H.S., Mahrous, S.A., Sharara, A. and Hassan, A. (2014) A Study for MHD Boundary Layer Flow of Variable Viscosity over a Heated Stretching Sheet via Lie-Group Method. Applied Mathematics & Information Sciences, in Press.
|
[28]
|
Abd-el-Malek, M.B., Badran, N.A., Hassan, H.S. and Abbas, H.H. (2015) New Solutions for Solving Boussinesq Equation via Potential Symmetries Method. Applied Mathematics and Computation, 251, 225-232.
http://dx.doi.org/10.1016/j.amc.2014.11.055
|
[29]
|
Abd-el-Malek, M.B., Badran, N.A., Hassan, H.S. and Abbas, H.H. (2014) Lie Group Method for Studying the Thermophoresis and Heat Generation Effect on Free-Convection Laminar Boundary-Layer Flow over a Vertical Flat Plate. Submitted for Publication.
|
[30]
|
Abd-el-Malek, M.B. and Hassan, H.S. (2014) Solution of N-Dimensional Radially Symmetric Non-Linear Diffusion Equation via Symmetry Analysis. Submitted for Publication.
|
[31]
|
Jacobson, N. (1979) Lie Algebras. Dover, New York.
|
[32]
|
WafoSoh, C. (2005) Invariant Solutions of the Unidirectional Flow of an Electrically Charged Power-Law Non-Newtonian Fluid over a Flat Plate in Presence of a Transverse Magnetic Field. Communications in Nonlinear Science and Numerical Simulation, 10, 537-548. http://dx.doi.org/10.1016/j.cnsns.2003.12.008
|