Wave-Particle Duality in Einstein-de Broglie Programs


The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitation, it describes only one aspect of the universe. In extension of general relativity, Einstein had proposed a symmetrical and complementary approach of physics. In his program, he privileged a relativist field based on representations for physical phenomena, before a precise mathematical description. It allows completing and unifying the universe description, like both eyes for relief vision, and both ears for stereophonic audition. We propose to show it with many simple examples.

Share and Cite:

Elbaz, C. (2014) Wave-Particle Duality in Einstein-de Broglie Programs. Journal of Modern Physics, 5, 2192-2199. doi: 10.4236/jmp.2014.518213.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] de Broglie, L. (1955) Le dualisme des ondes et des corpuscules dans l’ceuvre de Albert Einstein. Academie des Sciences, Paris, 27.
[2] de Broglie, L. (1963) Recherche sur la theorie des quanta. Masson, Paris.
[3] Diner, S., Fargue, D., Lochak, G. and Selleri, F. (1984) The Wave-Particle Dualism (A Tribute to Louis de Broglie 90th Birthday). Reidel Corp.
[4] Einstein, A. and Infeld, L. (1938) The Evolution of Physics. Cambridge University Press, Cambridge, 228-232.
[5] Einstein, A. (1920) The Aether and Relativity Theory. Leyde University, Leyde.
[6] Einstein, A. (1949) Philosopher, Scientist. Cambridge University Press, London.
[7] Elbaz, C. (2013) Annales de la Fondation Louis de Broglie, 38, 195-217.
[8] Elbaz, C. (2010) Asymptotic Analysis, 68, 77-88.
[9] Elbaz, C. (2012) Discrete and Continuous Dynamical Systems, A.I.M.S, Series B, 17, 835-849.
[10] Dimarcq, N. (2013) La mesure du temps.
[11] Salomon, C. (2014) La mesure du temps et les tests de la relativite, ENS, LKB.
[12] Boudet, R. (1989) Annales de la Fondation Louis de Broglie, 14, 119-146.
[13] Boudet, R. (2009) Relativistic Transitions in the Hydrogenic Atoms. Springer-Verlag, Berlin.
[14] Boudet, R. (2011) Quantum Mechanics in the Geometry of Space-Time. Springer Briefs in Physics, 7-11.
[15] Davisson, C.J. and Germer, L.H. (1927) Nature, 119, 558-560.
[16] Logiurato, F. and Smerzi, A. (2012) Journal of Modern Physics, 3, 1802-1812.
[17] Logiurato, F., Gratton, L. and Oss, S. (2008) The Physics Teacher, 46, 109.
[18] Cronin, A., Schmiedmayer, J. and Pritchard, D.E. (2009) Reviews of Modern Physics, 81, 1051.
[19] Laloe, F. (2001) American Journal of Physics, 69, 655.
[20] Jorgensen, T.P. (1998) International Journal of Theoretical Physics, 37, 2763-2766.
[21] Hobson, A. (2013) American Journal of Physics, 81, 211.
[22] Berninger, M., Stefanov, A., Deachapunya, S. and Arndt, M. (2007) Physical Review A, 76, Article ID: 013607.
[23] O’keefe, M. (2011) World Record Resolution at 0.78 Angstr. MCEM, Bekeley Lab.
[24] Jennison, R.C. and Drinkwater, A.J. (1977) Journal of Physics A, 10, 167.
[25] Jennison, R.C. (1980) Journal of Physics A, 13, 2247.
[26] MacKinnon, E. (1975) American Journal of Physics, 44, 1047.
[27] Elbaz, C. (1987) Journal of Physics A: Mathematical and General, 20, L279-L282.
[28] Haroche, S. (2007) Vie et mort d’un photon: Une autre maniere de voir. Lettre du college de France, No. 20, june 2007.
[29] Haroche, S. (2013) La dualite onde-particule. Rome.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.