Impact of Natural Selection on Lignin and Cellulose Candidate Genes in a Natural Population of Eucalyptus urophylla

DOI: 10.4236/oje.2014.417091   PDF   HTML   XML   2,851 Downloads   3,450 Views   Citations


Wood plays a major role in land ecosystems and in human activity. Better understanding the genetic basis and evolutionary implication of wood variability are thus key issues with both ecological and economical implications. The present paper addresses the question of the extending and the nature of natural selection on wood related genes in Eucalyptus urophylla, a tropical tree species with key economical importance. We conducted a genetic study on an E. urophylla population from Timor Island using a set of 17 SSR characterized on a main sample of 43 individuals and six candidate genes sequenced on a subset of 18 individuals. The candidate genes include three cellulose synthase genes (EuCesA1, EuCesA2 and EuCesA3), and three genes involved in lignin synthesis (EuCAD2, EuC4H1 and EuC4H2). Based on SSR data, the investigated population appeared to have no structure and have undergone past population expansion. Accounting for this demographic history, we were able to draw neutral expectation for polymorphism distribution on candidate genes and to determine their potential selective status. We hence identified two gene portions exhibiting unexpected polymorphism pattern, consistent with natural selection imprint.

Share and Cite:

Camus-Kulandaivelu, L. , Favreau, B. , Ueno, S. , Przybyla, J. and Bouvet, J. (2014) Impact of Natural Selection on Lignin and Cellulose Candidate Genes in a Natural Population of Eucalyptus urophylla. Open Journal of Ecology, 4, 1128-1150. doi: 10.4236/oje.2014.417091.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. and Zanne, A.E. (2009) Towards a Worldwide Wood Economics, Spectrum. Ecology Letters, 12, 351-366.
[2] Weedon, J.T., Cornwell, W.K., Cornelissen, J.H.C., Zanne, A.E., Wirth, C. and Coomes, D.A. (2009) Global Meta-Analysis of Wood Decomposition Rates: A Role for Trait Variation among Tree Species? Ecology Letters, 12, 45-56.
[3] Gerrienne, P., Gensel, P.G., Strullu-Derrien, C., Lardeux, H., Steemans, P. and Prestianni, C. (2011) A Simple Type of Wood in Two Early Devonian Plants. Science, 333, 837.
[4] Zhang, S.-B., Slik, J.W.F., Zhang, J.-L. and Cao, K.-F. (2011) Spatial Pattern of Wood Traits in China Are Controlled by Phylogeny and the Environment. Global Ecology and Biogeography, 20, 241-250.
[5] Zobel, B.J. and van Buijtenen, J.P. (1989) Wood Variation. Its Causes and Control. Springer-Verlag, Heidelberg.
[6] Allona, I., Quinn, M., Shoop, E., Swope, K., Cyr, S.S., Carlis, J., et al. (1998) Analysis of Xylem Formation in Pine by cDNA Sequencing. Proceedings of the National Academy of Sciences, 95, 9693-9698.
[7] Paux, E., Carocha, V., Marques, C., de Sousa, A.M., Borralho, N., Sivadon, P. and Grima-Pettenati, J. (2005) Transcript Profiling of Eucalyptus Xylem Genes during Tension Wood Formation. New Phytologist, 167, 89-100.
[8] Pavy, N., Paule, C., Parsons, L., Crow, J., Morency, M.-J., Cooke, J., Johnson, J., Noumen, E., Guillet-Claude, C., Butterfield, Y., et al. (2005) Generation, Analysis and Database Integration of 16,500 White Spruce EST Clusters. BMC Genomics, 6, 144.
[9] Cato, S., McMillan, L., Donaldson, L., Richardson, T., Echt, C. and Gardner, R. (2006) Wood Formation from the Base to the Crown in Pinus radiata, Gradients of Tracheid Wall Thickness, Wood Density, Radial Growth Rate and Gene Expression. Plant Molecular Biology, 60, 565-581.
[10] Yuan, Z., Yao, X., Zhang, D.B., Sun, Y. and Huang, H. (2007) Genome-Wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro That Is Defective in the Cell Wall Formation. Journal of Integrative Plant Biology, 49, 1754-1762.
[11] Qiu, D., Wilson, I.W., Gan, S., Washusen, R., Moran, G.F. and Southerton, S.G. (2008) Gene Expression in Eucalyptus Branch Wood with Marked Variation in Cellulose Microfibril Orientation and Lacking G-Layers. New Phytologist, 179, 94-103.
[12] Li, X., Wu, H., Dillon, S. and Southerton, S.G. (2009) Generation and Analysis of Expressed Sequence Tags from Six Developing Xylem Libraries in Pinus radiata D. Don. BMC Genomics, 10, 1-18.
[13] Thumma, B.R., Nolan, M.R., Evans, R. and Moran, G.F. (2005) Polymorphisms in Cinnamoyl CoA Reductase (CCR) Are Associated with Variation in Microfibril Angle in Eucalyptus spp. Genetics, 171, 1257-1265.
[14] Thumma, B.R., Matheson, B.A., Zhang, D.Q., Meeske, C., Meder, R., Downes, G.M. and Southerton, S.G. (2009) Identification of a Cis-Acting Regulatory Polymorphism in a Eucalypt COBRA-Like Gene Affecting Cellulose Content. Genetics, 183, 1153-1164.
[15] Dillon, S.K., Brawner, J.T., Meder, R., Lee, D.J. and Southerton, S.G. (2012) Association Genetics in Corymbia citriodora subsp. Variegate Identifies Single Nucleotide Polymorphisms Affecting Wood Growth and Cellulosic Pulp Yield. New Phytologist, 195, 596-608.
[16] Mandrou, E., Hein, P.R.G., Villar, E., Vigneron, P., Plomion, C. and Gion, J.-M. (2012) A Candidate Gene for Lignin Composition in Eucalyptus: Cinnamoyl-CoA Reductase (CCR). Tree Genetics Genomes, 8, 353-364.
[17] Denis, M., Favreau, B., Ueno, S., Camus-Kulandaivelu, L., Chaix, G., Gion, J.M., Nourrisier-Montou, S., Polidori, J. and Bouvet, J.M. (2013) Genetic Variation of Wood Chemical Traits and Association with Underlying Genes in Eucalyptus urophylla. Tree Genetics and Genomes, 9, 927-942.
[18] Pot, D., McMillan, L., Echt, C., Le Provost, G., Garnier-Géré, P., Cato, S. and Plomion, C. (2005) Nucleotide Variation in Genes Involved in Wood Formation in Two Pine Species. New Phytologist, 167, 101-112.
[19] Gonzalez-Martinez, S.C., Erzoz, E., Brown, G.R., Wheeler, N.C. and Neale, D.B. (2006) DNA Sequence Variation and Selection of Tag Single-Nucleotide Polymorphisms at Candidate Genes for Drought-Stress Response in Pinus taeda L. Genetics, 172, 1915-1926.
[20] Martin, B. and Cossalter, C. (1975-1976) Les Eucalyptus des Iles de la Sonde. 1re partie. Bois et Forêt des Tropiques 163, 164, 165, 166, 167, 168.
[21] Eldridge, K., Davidson, J., Harwood, C. and Van Wyk, G. (1993) Eucalypt Domestication and Breeding. Oxford University Press, Oxford.
[22] Tripiana, V., Bourgeois, M., Verhargen, D., Vigneron, P. and Bouvet, J.-M. (2007) Combining Microsatellites, Growth, and Adaptive Traits for Managing in Situ Genetic Resources of Eucalyptus urophylla. Canadian Journal for Forest Research, 37, 773-785.
[23] Mueller, S.C. and Brown Jr., R.M. (1980) Evidence for an Intramembranous Component Associated with a Cellulose Microfibril Synthesizing Complex in Higher Plants. Journal of Cell Biology, 84, 315-326.
[24] Kimura, S., Laosinchai, W., Itoh, T., Cuib, X., Linderc, C.R. and Brown Jr., R.M. (1999) Immunogold Labeling of Rosette Terminal Cellulose-Synthesizing Complexes in the Vascular Plant Vigna angularis. Plant Cell, 11, 2075-2085.
[25] Herth, W. (1983) Arrays of Plasma-Membrane “Rosettes” Involved in Cellulose Microfibril Formation of Spirogyra. Planta, 159, 347-356.
[26] Burton, R.A., Shirley, N.J., King, B.J., Harvey, A.J. and Fincher, G.B. (2004) The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes. Plant Physiology, 134, 224-236.
[27] Ranik, M. and Myburg, A.A. (2006) Six New Cellulose Synthase Genes from Eucalyptus Are Associated with Primary and Secondary Cell Wall Biosynthesis. Tree Physiology, 26, 545-556.
[28] Raes, J., Rohde, A., Christensen, J.H., van de Peer, Y. and Boerjan, W. (2003) Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis. Plant Physiology, 133, 1051-1071.
[29] Nedelkina, S., Jupe, S.C., Blee, K.A., Schalk, M., Werck-Reichert, D. and Bolwell, G.P. (1999) Novel Characteristics and Regulation of a Divergent Cinnamate 4-Hydroxylase (CYP73A15) from French Bean: Engineering Expression in Yeast. Plant Molecular Biology, 39, 1079-1090.
[30] Betz, C., McCollum, T.G. and Mayer, R.T. (2001) Differential Expression of Two Cinnamate 4-Hydroxylase Genes in “Valencia” Orange (Citrus sinensis Osbeck). Plant Molecular Biology, 46, 741-748.
[31] Payn, K.G., Dvorak, W.S., Janse, B.H. and Myburg, A.A. (2008) Microsatellite Diversity and Genetic Structure of the Commercially Important Tropical Tree Species Eucalyptus urophylla, Endemic to Seven Islands in Eastern Indonesia. Tree Genetics & Genomes, 4, 519-530.
[32] Payn, K.G., Dvorak, W.S. and Myburg, A.A. (2007) Chloroplast DNA Phylogeography Reveals the Island Colonisation Route of Eucalyptus urophylla (Myrtaceae). Australian Journal of Botany, 55, 673-683.
[33] Beaumont, M.A., Zhang, W.Y. and Balding, D.J. (2002) Approximate Bayesian Computation in Population Genetics. Genetics, 162, 2025-2035.
[34] Gawel, N. and Jarret, R.L. (1991) Cytoplasmic Genetic Diversity in Bananas and Plantains. Euphytica, 52, 19-23.
[35] Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. (1984) Ribosomal DNA Spacer-Length Polymorphisms in Barley, Mendelian Inheritance, Chromosomal Location, and Population Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81, 8014-8018.
[36] Brondani, R.P.V., Brondani, C., Tarchini, R. and Grattapaglia, D. (1998) Development, Characterization and Mapping of Microsatellite Markers in Eucalyptus grandis and Eucalyptus urophylla. Theoretical and Applied Genetics, 97, 816-827.
[37] Brondani, R.P.V., Brondani, C. and Grattapaglia, D. (2002) Towards a Genus-Wide Reference Linkage Map for Eucalyptus Based Exclusively on Highly Informative Microsatellite Markers. Molecular Genetics and Genomics, 267, 338-347.
[38] van der Nest, M.A., Steenkamp, E.T., Wingfield, B.D. and Wingfield, M.J. (2000) Development of Simple Sequence Repeat (SSR) Markers in Eucalyptus from Amplified Inter-Simple Sequence Repeats (ISSR). Plant Breeding, 119, 433-436.
[39] Dmitriev, D.A. and Rakitov, R.A. (2008) Decoding of Superimposed Traces Produced by Direct Sequencing of Heterozygous Indels. PLoS Computational Biology, 4, e1000113.
[40] Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of Population Structure Using Multilocus Genotype data. Genetics, 155, 945-959.
[41] Hubisz, M.J., Falush, D., Stephens, M. and Pritchard, J.K. (2009) Inferring Weak Population Structure with the Assistance of Sample Group Information. Molecular Ecology Resources, 9, 1322-1332.
[42] Cornuet, J.M., Santos, F., Beaumont, M.A., Robert, C.P., Marin, J.-M., Balding, D.J., Guillemaud, T. and Estoup, A. (2008) Inferring Population History with DIYABC, a User Friendly Approach to Approximate Bayesian Computation. Bioinformatics, 24, 2713-2719.
[43] Cornuet, J.M., Ravigné, V. and Estoup, A. (2010) Inference on Population History and Model Checking Using DNA Sequence and Microsatellite Data with the Software DIYABC (v1.0). Bioinformatics, 11, 401.
[44] Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
[45] Garza, J.C. and Williamson, E.G. (2001) Detection of Reduction in Population Size Using Data from Microsatellite Loci. Molecular Ecology, 10, 305-318.
[46] Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. and Rozas, R. (2003) DnaSP, DNA Polymorphism Analyses by the Coalescent and Other Methods. Bioinformatics, 19, 2496-2497.
[47] Watterson, G.A. (1975) Number of Segragating Sites in Genetic Models without Recombination. Theoretical Population Biology, 7, 256-276.
[48] Tajima, F. (1989) Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics, 123, 585-595.
[49] Roth, C. and Liberles, D. (2006) A Systematic Search for Positive Selection in Higher Plants (Embryophytes). BMC Plant Biology, 6, 12.
[50] Hudson, R.R., Kreitman, M. and Aguade, M. (1987) A Test of Neutral Molecular Evolution Based on Nucleotide Data. Genetics, 116, 153-159.
[51] McDonald, J.H. and Kreitman, M. (1991) Adaptive Protein Evolution at the Adh Locus in Drosophila. Nature, 351, 652-654.
[52] De Mita, S. and Siol, M. (2012) EggLib: Processing, Analysis and Simulation Tools for Population Genetics and Genomics. BMC Genetics, 13, 27.
[53] Przeworski, M. (2003) Estimating the Time since Fixation of a Beneficial Allele. Genetics, 164, 1667-1676.
[54] Corder, G.W. and Foreman, D.I. (2009) Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. John Wiley & Sons, Inc., Hoboken.
[55] Sexton, T.R. (2011) Candidate Gene Discovery, Genotyping and Association with Wood Quality Traits in Eucalyptus pillularis (Blackbutt). Ph.D. Thesis, Southern Cross University, Lismore.
[56] Ohno, S. (1970) Evolution by Gene Duplication. Springer, New York, USA.
[57] Quang, T.H., Hallingback, H., Gyllenstrand, N., von Arnold, S. and Claphan, D. (2012) Expression of Genes of Cellulose and Lignin Synthesis in Eucalyptus urophylla and Its Relation to Some Economic traits. Trees, 26, 893-901.
[58] Hawkins, S. and Boudet, A. (2003) “Defence Lignin” and Hydroxycinnamyl Alcohol Dehydrogenase Activities in Wounded Eucalyptus gunnii. Forest Pathology, 33, 91-104.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.