A Review of Control Algorithms for Autonomous Quadrotors

Abstract

The quadrotor unmanned aerial vehicle is a great platform for control systems research as its nonlinear nature and under-actuated configuration make it ideal to synthesize and analyze control algorithms. After a brief explanation of the system, several algorithms have been analyzed including their advantages and disadvantages: PID, Linear Quadratic Regulator (LQR), Sliding mode, Backstepping, Feedback linearization, Adaptive, Robust, Optimal, L1, H, Fuzzy logic and Artificial neutral networks. The conclusion of this work is a proposal of hybrid systems to be considered as they combine advantages from more than one control philosophy.

Share and Cite:

Zulu, A. and John, S. (2014) A Review of Control Algorithms for Autonomous Quadrotors. Open Journal of Applied Sciences, 4, 547-556. doi: 10.4236/ojapps.2014.414053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Huo, X., Huo, M. and Karimi, H.R. (2014) Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach.
Mathematical Problems in Engineering, 2014, 1-9.
[2] Mahony, R., Kumar, V. and Corke, P. (2012) Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. Robotics Automation Magazine, 19, 20-32.
http://dx.doi.org/10.1109/MRA.2012.2206474
[3] Lee, B.-Y., Lee, H.-I. and Tahk, M.-J. (2013) Analysis of Adaptive Control Using On-Line Neural Networks for a Quadrotor UAV.
13th International Conference on Control, Automation and Systems (ICCAS), 20-23 October 2013, 1840- 1844.
[4] Bouabdallah, S. (2007) Design and Control of Quadrotors with Application to Autonomous Flying. Ph.D. Dissertation, Lausanne Polytechnic University, Lausanne.
[5] John, S. (2013) Artificial Intelligent-Based Feedforward Optimized PID Wheel Slip Controller. AFRICON, 12 September 2013, Pointe-Aux-Piments, 1-6.
[6] Lee, K.U., Kim, H.S., Park, J.-B. and Choi, Y.-H. (2012) Hovering Control of a Quadroto. 12th International Conference on Control, Automation and Systems (ICCAS), 17-21 October 2012, 162-167.
[7] Li, J. and Li, Y. (2011) Dynamic Analysis and PID Control for a Quadrotor. International Conference on Mechatronics and Automation (ICMA), 7-10 August 2011, 573-578.
[8] Bouabdallah, S., Noth, A. and Siegwart, R. (2004) PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Vol. 3, 28 September-2 October 2004, 2451-2456.
[9] Cowling, I.D., Yakimenko, O.A., Whidborne, J.F. and Cooke, A.K. (2007) A Prototype of an Autonomous Controller for a Quadrotor UAV. European Control Conference, July 2007, Kos, 1-8.
[10] Minh, L.D. and Ha, C. (2010) Modeling and Control of Quadrotor MAV Using Vision-Based Measurement. International Forum on Strategic Technology (IFOST), 13-15 October 2010, 70-75.
[11] Xu, R. and Ozguner, U. (2006) Sliding Mode Control of a Quadrotor Helicopter. Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, 13-15 December 2006, 4957-4962.
[12] Runcharoon, K. and Srichatrapimuk, V. (2013) Sliding Mode Control of Quadrotor. Proceedings of the 2013 International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Konya, 9-11 May 2013, 552-557.
[13] Madani, T. and Benallegue, A. (2006) Backstepping Control for a Quadrotor Helicopter. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 9-15 October 2006, 3255-3260.
[14] Fang, Z. and Gao, W. (2011) Adaptive Integral Backstepping Control of a Micro-Quadrotor. Proceedings of the 2nd International Conference on Intelligent Control and Information Processing (ICICIP), Harbin, 25-28 July 2011, 910- 915.
[15] Diao, C., Xian, B., Yin, Q., Zeng, W., Li, H. and Yang, Y. (2011) A Nonlinear Adaptive Control Approach for Quadrotor UAVs. Proceedings of the 8th Asian Control Conference (ASCC), Kaohsiung, 15-18 May 2011, 223-228.
[16] Palunko, I. and Fierro, R. (2011) Adaptive Control of a Quadrotor with Dynamic Changes in the Center of Gravity. Proceedings of the 18th IFAC World Congress, Milan, 28 August-2 September 2011, 2626-2631.
[17] De Monte, P. and Lohmann, B. (2013) Position Trajectory Tracking of a Quadrotor Helicopter Based on L1 Adaptive Control. Proceedings of the 2013 European Control Conference (ECC), Zurich, 17-19 July 2013, 3346-3353.
[18] Bai, Y., Liu, H., Shi, Z. and Zhong, Y. (2012) Robust Control of Quadrotor Unmanned Air Vehicles. Proceedings of the 31st Chinese Control Conference (CCC), Hefei, 25-27 July 2012, 4462-4467.
[19] Tony, C. and Mackunisy, W. (2012) Robust Attitude Tracking Control of a Quadrotor Helicopter in the Presence of Uncertainty. Proceedings of the IEEE 51st Annual Conference on Decision and Control (CDC), Maui, 10-13 December 2012, 937-942.
[20] Satici, A., Poonawala, H. and Spong, M. (2013) Robust Optimal Control of Quadrotor UAVs. IEEE Access, 1, 79-93.
http://dx.doi.org/10.1109/ACCESS.2013.2260794
[21] Falkenberg, O., Witt, J., Pilz, U., Weltin, U. and Werner, H. (2012) Model Identification and H1 Attitude Control for Quadrotor MAVs.
Intelligent Robotics and Applications, 460-471.
[22] Raffo, G.V., Ortega, M.G. and Rubio, F.R. (2010) An Integral Predictive/Nonlinear h? Control Structure for a Quadrotor Helicopter. Automatica, 46, 29-39.
http://dx.doi.org/10.1016/j.automatica.2009.10.018
[23] Roza, A. and Maggiore, M. (2012) Path Following Controller for a Quadrotor Helicopter. Proceedings of the American Control Conference (ACC), Montreal, 27-29 June 2012, 4655-4660.
http://dx.doi.org/10.1109/ACC.2012.6315061
[24] Lee, D., Kim, H.J. and Sastry, S. (2009) Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter. International Journal of Control, Automation and Systems, 7, 419-428.
http://dx.doi.org/10.1007/s12555-009-0311-8
[25] Santos, M., Lopez, V. and Morata, F. (2010) Intelligent Fuzzy Controller of a Quadrotor. Proceedings of the 2010 International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Hangzhou, 15-16 November 2010, 141-146.
[26] Nicol, C., Macnab, C.J.B. and Ramirez-Serrano, A. (2008) Robust Neural Network Control of a Quadrotor Helicopter. Proceedings of the Canadian Conference on Electrical and Computer Engineering, Niagara Falls, 4-7 May 2008, 1233-1237.
[27] Dierks, T. and Jagannathan, S. (2010) Output Feedback Control of a Quadrotor UAV Using Neural Networks. IEEE Transactions on Neural Networks, 21, 50-66.
http://dx.doi.org/10.1109/TNN.2009.2034145
[28] Boudjedir, H., Yacef, F., Bouhali, O. and Rizoug, N. (2012) Adaptive Neural Network for a Quadrotor Unmanned Aerial Vehicle. International Journal in Foundations of Computer Science and Technology, 2, 1-13.
http://dx.doi.org/10.5121/ijfcst.2012.2401
[29] Zeghlache, S., Saigaa, D., Kara, K., Harrag, A. and Bouguerra, A. (2012) Backstepping Sliding Mode Controller Improved with Fuzzy Logic: Application to the Quadrotor Helicopter. Archives of Control Sciences, 22, 315-342.
[30] Benallegue, A., Mokhtari, A. and Fridman, L. (2006) Feedback Linearization and High Order Sliding Mode Observer for a Quadrotor UAV. Proceedings of the International Workshop on Variable Structure Systems, Alghero, 5-7 June 2006, 365-372.
[31] Madani, T. and Benallegue, A. (2008) Adaptive Control via Backstepping Technique and Neural Networks of a Quadrotor Helicopter. Proceedings of the 17th World Congress of the International Federation of Automatic Control, Seoul, July 6-11 2008, 6513-6518.
[32] Cetinsoy, E., Dikyar, S., Hancer, C., Oner, K.T., Sirimoglu, E., Unel, M. and Aksit, M.F. (2012) Design and Construction of a Novel Quad Tilt-Wing UAV. Mechatronics, 22, 723-745.
http://dx.doi.org/10.1016/j.mechatronics.2012.03.003
[33] Ryll, M., Bulthoff, H. and Giordano, P. (2012) Modeling and Control of a Quadrotor UAV with Tilting Propellers. Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, 14-18 May 2012, 4606-4613.
[34] Senkul, F. and Altug, E. (2013) Modeling and Control of a Novel Tilt—Roll Rotor Quadrotor UAV. Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, 28-31 May 2013, 1071-1076.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.