[1]
|
Whittaker, E.T. (1915) On a Class of Differential Equations Whose Solutions Satisfy Integral Equations. Proceedings of the Edinburgh Mathematical Society, 33, 14-33. http://dx.doi.org/10.1017/S0013091500002297
|
[2]
|
Ince, E.L. (1923) A Linear Differential Equation with Periodic Coefficients. Proceedings of the London Mathematical Society, 23, 800-842.
|
[3]
|
Ince, E.L. (1925) The Real Zeros of Solutions of a Linear Differential Equation with Periodic Coefficients. Proceedings of the London Mathematical Society, 25, 53-58.
|
[4]
|
Magnus, W. and Winkler, S. (1966) Hill’s Equation. John Wiley & Sons, New York.
|
[5]
|
Arscott, F.M. (1964) Periodic Differential Equations. Pergamon Press, New York.
|
[6]
|
Volkmer, H. (2003) Coexistence of Periodic Solutions of Ince’s Equation. Analysis, 23, 97-105. http://dx.doi.org/10.1524/anly.2003.23.1.97
|
[7]
|
Recktenwald, G. and Rand, R. (2005) Coexistence Phenomenon in Autoparametric Excitation of Two Degree of Freedom Systems. International Journal of Non-Linear Mechanics, 40, 1160-1170. http://dx.doi.org/10.1016/j.ijnonlinmec.2005.05.001
|
[8]
|
Hemerey, A.D. and Veselov, A.P. (2009) Whittaker-Hill Equation and Semifinite Gap Schrodinger Operators. 1-10. arXiv:0906.1697v2
|
[9]
|
Eastham, M. (1973) The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh, London.
|
[10]
|
Volkmer, H. (2004) Four Remarks on Eigenvalues of Lamé’s Equation. Analysis and Applications, 2, 161-175. http://dx.doi.org/10.1142/S0219530504000023
|
[11]
|
Coddington, E. and Levinson, N. (1955) Theory of Ordinary Differential Equations. Robert E. Krieger Publishing Company, Malarbar.
|
[12]
|
Kato, T. (1980) Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, Heidelberg, New York.
|