Integrated Evaluation of Soil Erosion Hazard and Risk Management in the Oued Beht Watershed Using Remote Sensing and GIS Techniques: Impacts on El Kansra Dam Siltation (Morocco)


The initial state of the Oued Beht watershed (430,728 ha) is characterized by a socio-ecological vulnerability associated to the water erosion risk. Especially, the consequences are chained and the soil loss alters its hydrological behavior and its ability to protect functional and structural challenges (good land, El Kansra dam, agricultural activities). In this perspective, this study suggests a methodology, reproducible and generalizable, to assess the natural water erosion risk (R). The approach used is based on spatial processing technology of information to develop a spatial database and geographic information system (GIS) concerning biophysical and topoclimatic parameters in the Oued Beht watershed. Thus, the risk analysis is obtained by combining thematic maps of Susceptibility (S) and potential Consequences (C). Although, the spatial analysis of maps obtained reveals the extent of susceptibility involving land degradation, with the potential risks, which generated a decrease in the storage capacity of El Kansra dam (?3.03 Mm3/year). The results show that erosion is active on more than three quarters (3/4) of the watershed, and a considerable loss of land with 8.36 Million tonnes per year. In this way, flood analysis and study of hydrometeorological events identified the vulnerability of flood sites (hot-spot) contributing at 77% of El Kansra siltation dam. Therefore, the consequence assessment is obtained by identifying risk elements and estimating potential damage coefficient, which represents the financial gap flow affecting the socio-economic context due to the erosion impacts.

Share and Cite:

Gaatib, R. and Larabi, A. (2014) Integrated Evaluation of Soil Erosion Hazard and Risk Management in the Oued Beht Watershed Using Remote Sensing and GIS Techniques: Impacts on El Kansra Dam Siltation (Morocco). Journal of Geographic Information System, 6, 677-689. doi: 10.4236/jgis.2014.66056.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] High Commission for Water, Forest and Fight against Desertification HCEFLCD (1996) National Watershed Management Plan (PNABV). 736/version/1/file/Plan+National+d%E2%80%99Am%C3%A9nagement+des+Bassins+Versants
[2] Aleotti, P. and Chowdhury, R. (1999) Landslide Hazard Assessment: Summary Review and New Perspectives. Bulletin of Engineering Geology and the Environment, 58, 21-44.
[3] High Commission for Planning HCP (2011) Moroccan Statistical Yearbook.
[4] Water Basin Agency of Sebou (2011) Updating Integrated Water Resource Management Plan in the Sebou Watershed. cad=rja&uact=8&ved=0CB0QFjAA& _event%2Frapport%2520PDAIRE.pdf&ei=CTaEVPHaFqT4yQOj3oGwAQ&usg=AFQjCNER_peG3QMmYy 5D4SWGH3Ynoxjewg&bvm=bv.80642063,d.d2s
[5] Wischmeier, W.H. and Smith, D.D. (1965) Prediction Rainfall Erosion Losses from Cropland East of the Rocky Mountains: A Guide for Selection of Practices for Soil and Water Conservation. U.S. Department of Agriculture Handbook 282, Washington DC.
[6] Wischmeier W.H. and Smith D.D. (1978) Prediction Rainfall Erosion Losses, a Guide to Conservation Planning Science. U.S. Department of Agriculture Handbook 537, Washington DC, 60 p.
[7] PNUE (1998) Plan d’Action Prioritaire: Directives pour la cartographie et la mesure des processus d’érosion hydrique dans les zones méditerranéennes (PAP/CAR).
[8] Guillot, P. and Duband, D. (1968) La méthode du GRADEX pour le calcul de la probabilité des crues à partir des pluies, SHF, question 1, rapport 7, Paris.
[9] Francou, S. and Rodier, F. (1967) Essai de classification des crues maximales observées dans le monde. Cahiers de l’ORSTOM, 4, 19-46.
[10] Maquaire, O., Weber, C., Thiery, Y., Puisant, A., Malet, J.-P. and Wania, A. (2004) Current Practices and Assessment Tools of Landslide Vulnerability in Mountainous Basins. Identification of Exposed Elements with a Semi-Automatic Procedure. In Lacerda, W.A., Ehrlich, M., Fontoura, S.A.B. and Sayao, A.S.F., Eds., Proceedings of the 9th International Symposium on Landslides, Rio de Janeiro, Brazil, Balkema Publishers, Rotterdam, 171-176.
[11] Ko Ko, C., Flentje, P. and Chowdhury, R. (2004) Landslides Qualitative Hazard and Risk Assessment Method and Its Reliability. Bulletin of Engineering Geology and Environment, 63, 149-165.
[12] Arnoldus, H. (1981) An Approximation of the Rainfall Factor in the USLE. In: et Gabriels, B., Ed., Assessment of Erosion, John Wiley, Hoboken, 127-132.
[13] Kalman, R. (1967) The Climatic Factor of Erosion in the Sebou Watershed Morocco. Sebou Project, 32 p.
[14] Roose, E. (1977) Erosion et ruissellement en Afrique de l'Ouest. Vingt années de mesures en petites parcelles. ORSTOM Paris, Travaux et doc., No. 78, 105 p.
[15] Roose, E. (1988) Soil and Water Conservation Lessons from Steep Slopes Farming in French Speaking Countries of Africa. In: Moldenhauer, W.C. and Hudson, N.W., Eds., Conservation Farming on Steep Lands, Soil and Water Conservation Society, Ankeny, 129-139.
[16] Heusch, B. (1969) L'érosion dans le bassin de Sebou Maroc: Une approche quantitative. Revue Géogr. Maroc, 15, 109-128.
[17] Roose, E. (1976) Use of the Universal Soil Loss Equation to Predict Erosion in West Africa. In: Soil Erosion: Prediction and Control, SCSA, Special Publication No. 21, 60-74.
[18] Roose, E. (1991) Conservation des sols en zone méditarrénenne. Synthèse et proposition d'une nouvelle stratégie de lutte antiérosive: La GCES. Cah. ORSTOM Pédol., 26, 145-181.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.