New Oscillation Criteria of Second-Order Nonlinear Delay Dynamic Equations on Time Scales

DOI: 10.4236/am.2014.521325   PDF   HTML   XML   3,379 Downloads   3,929 Views  

Abstract

By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.

Share and Cite:

Zhang, Q. and Gao, L. (2014) New Oscillation Criteria of Second-Order Nonlinear Delay Dynamic Equations on Time Scales. Applied Mathematics, 5, 3474-3483. doi: 10.4236/am.2014.521325.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Agarwal, R.P., Bohner, M. and Saker, S.H. (2005) Oscillation of Second Order Delay Dynamic Equations. Quarterly of Applied Mathematics, 13, 1-18.
[2] Sahiner. Y. (2005) Oscillation of Second Order Delay Differential Equations on Time Scales. Nonlinear Analysis: Theory, Methods & Applications, 63, 1073-1080.
http://dx.doi.org/10.1016/j.na.2005.01.062
[3] Erbe, L., Peterson, A. and Saker, S.H. (2007) Oscillation Criteria for Second Order Nonlinear Delay Dynamic Equations. Journal of Mathematical Analysis and Applications, 333, 505-522.
http://dx.doi.org/10.1016/j.jmaa.2006.10.055
[4] Saker, S.H. (2005) Oscillation Criteria of Second-Order Half-Linear Dynamic Equations on Time Scales. Journal of Computational and Applied Mathematics, 177, 375-387.
http://dx.doi.org/10.1016/j.cam.2004.09.028
[5] Grace, S.R., Bohner, M. and Agarwal, R.P. (2009) On the Oscillation of Second-Order Half-Linear Dynamic Equations. Journal of Difference Equations and Applications, 15, 451-460.
http://dx.doi.org/10.1080/10236190802125371
[6] Bohner, M. and Saker, S.H. (2004) Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales. Rocky Mountain Journal of Mathematics, 34, 1239-1245.
http://dx.doi.org/10.1216/rmjm/1181069797
[7] Erbe, L. (2001) Oscillation Criteria for Second Order Linear Equations on a Time Scale. The Canadian Applied Mathematics Quarterly, 9, 345-375.
[8] Zhang, Q., Song, X. and Gao, L. (2012) On the Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales. Applied Mathematics & Information Sciences, 30, 219-234.
[9] Zhang, Q., Gao, L. and Wang, L. (2011) Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales. Computers & Mathematics with Applications, 61, 2342-2348.
http://dx.doi.org/10.1016/j.camwa.2010.10.005
[10] Han, Z., Li, T., Sun, S. and Zhang, C. (2009) Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales. Advances in Difference Equations, Article ID: 756171, 13 pages.
[11] Bohner, M. and Peterson, A. (2001) Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston.
http://dx.doi.org/10.1007/978-1-4612-0201-1
[12] Bohner, M. and Peterson, A. (2003) Advances in Dynamic Equations on Time Scales. Birkh?user, Boston.
http://dx.doi.org/10.1007/978-0-8176-8230-9
[13] Sun, S., Han, Z. and Zhang, C. (2009) Oscillation of Second Order Delay Dynamic Equations on Time Scales. Journal of Applied Mathematics and Computing, 30, 459-468.
http://dx.doi.org/10.1007/s12190-008-0185-6
[14] Philos, Ch.G. (1989) Oscillation Theorems for Linear Differential Equations of Second Order. Archiv der Mathematik, 53, 482-492.
http://dx.doi.org/10.1007/BF01324723
[15] Saker, S.H. (2003) Oscillation Theorems for Second-Order Nonlinear Delay Difference Equations. Periodica Mathematica Hungarica, 47, 201-213.
http://dx.doi.org/10.1023/B:MAHU.0000010821.30713.be

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.