Combining Methods of Lyapunov for Exponential Stability of Linear Dynamic Systems on Time Scales ()
Share and Cite:
Huy, N. and Chau, D. (2014) Combining Methods of Lyapunov for Exponential Stability of Linear Dynamic Systems on Time Scales.
Applied Mathematics,
5, 3452-3459. doi:
10.4236/am.2014.521323.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Hilger, S. (1990) Analysis on Measure Chains—A Unified Approach to Continuous and Discrete Calculus. Results in Mathematics, 18, 19-56. http://dx.doi.org/10.1007/BF03323153
|
[2]
|
Bohner, M. and Peterson, A. (2001) Dynamic Equation on Time Scales: An Introduction with Applications. Birkhauser, Boston. http://dx.doi.org/10.1007/978-1-4612-0201-1
|
[3]
|
Kaymakacalan, B., Lakshmikantham, V. and Sivasundaram, S. (1996) Dynamic Systems on Measure Chains. Kluwer, Dordrecht.
|
[4]
|
Potzsche, C., Siegmund, S. and Wirth, F. (2003) A Spectral Characterization of Exponential Stability for Linear Time-Invariant Systems on Time Scales. Discrete and Continuous Dynamical Systems, 9, 1223-1241.
http://dx.doi.org/10.3934/dcds.2003.9.1223
|
[5]
|
Agarwal, R., Bohner, M., O’Regan, D. and Peterson, A. (2002) Dynamic Equation on Time Scales: A Survey. Journal of Computational and Applied Mathematics, 141, 1-26. http://dx.doi.org/10.1016/S0377-0427(01)00432-0
|
[6]
|
Aulback, B. and Hilger, S. (1971) Linear Dynamic Processes with Inhomogeneous Time Scale. In: Nonlinear Dynamics and Quantum Dynamical Systems, 3rd Edition, Akademie-Verlag, Berlin, Mathematical Research Bd. 59.
|
[7]
|
Akin-Bohner, E., Bohner, M. and Akin, F. (2005) Pachpatte Inequalities on Time Scales. Journal of Inequalities in Pure and Applied Mathematics, 6, 23.
|