Share This Article:

Evolution of PE35 and PPE68 Gene Families in Mycobacterium: Roles of Horizontal Gene Transfer and Evolutionary Constraints

Abstract Full-Text HTML XML Download Download as PDF (Size:3309KB) PP. 181-198
DOI: 10.4236/jtr.2014.24023    2,585 Downloads   3,192 Views   Citations

ABSTRACT

Mycobacterium is a genus of bacteria with over a hundred non-pathogenic and pathogenic species, best recognized for certain members known to cause diseases such as tuberculosis and leprosy. Two novel protein families important in the pathogenesis of Mycobacterium species are the PE and PPE families. These two protein families affect the antigenic profiles, disturbing host immunity. To better understand the origin and evolution of these gene families and the differences in their composition between pathogenic and non-pathogenic strains, several bioinformatic analyses were conducted both among Mycobacterium and closely related species that contain PE35 and PPE68 gene homologs. The methods included protein homology searches (BLASTP), horizontal gene transfer analysis (IslandViewer), phylogenetic analysis, gene cluster analysis and structural and functional constraints. Results revealed that PE and PPE gene homologs were not only limited to Mycobacterium, but also existed in three other non-mycobacterial genera, Rhodococcus, Tsukamurella and Segniliparus, and were possibly initially acquired from non-mycobacterial microorganisms by multiple horizontal gene transfers. Results also demonstrated that PE and PPE genes were more diverse and more rapidly evolving in pathogenic Mycobacterium as compared with non-pathogenic Mycobacterium and other non-mycobacterial species. These findings possibly shed light on the diverse functions and origins of the PE/PPE proteins among these organisms.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bavishi, A. , Lin, L. , Choudhary, M. and Primm, T. (2014) Evolution of PE35 and PPE68 Gene Families in Mycobacterium: Roles of Horizontal Gene Transfer and Evolutionary Constraints. Journal of Tuberculosis Research, 2, 181-198. doi: 10.4236/jtr.2014.24023.

References

[1] Banu, S., Honore, N., Saint-Joanis, B., Philpott, D., Prevost, M.C. and Cole, S.T. (2002) Are the PE-PGRS Proteins of Mycobacterium Tuberculosis Variable Surface Antigens? Molecular Microbiology, 44, 9-19.
http://dx.doi.org/10.1046/j.1365-2958.2002.02813.x
[2] Brennan, P.J. and Vissa, V.D. (2001) Genomic Evidence for the Retention of the Essential Mycobacterial Cell Wall in the Otherwise Defective Mycobacterium Leprae. Leprosy Review, 72, 415-428.
[3] Lambrecht, R.S., Carriere, J.F. and Collins, M.T. (1988) A Model for Analyzing Growth Kinetics of a Slowly Growing Mycobacterium sp. Applied and Environmental Microbiology, 54, 910-916.
[4] Tsukamura, M. (1966) Adansonian Classification of Mycobacteria. Journal of General Microbiology, 45, 253-273. http://dx.doi.org/10.1099/00221287-45-2-253
[5] Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry 3rd, C.E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S. and Barrell, B.G. (1998) Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence. Nature, 393, 537-544. http://dx.doi.org/10.1038/31159
[6] Camus, J.C., Pryor, M.J., Medigue, C. and Cole, S.T. (2002) Re-Annotation of the Genome Sequence of Mycobacterium Tuberculosis H37Rv. Microbiology, 148, 2967-2973.
[7] Chaitra, M.G., Hariharaputran, S., Chandra, N.R., Shaila, M.S. and Nayak, R. (2005) Defining Putative T Cell Epitopes from PE and PPE Families of Proteins of Mycobacterium Tuberculosis with Vaccine Potential. Vaccine, 23, 1265-1272. http://dx.doi.org/10.1016/j.vaccine.2004.08.046
[8] Gey van Pittius, N.C., Sampson, S.L., Lee, H., Kim, Y., van Helden, P.D. and Warren, R.M. (2006) Evolution and Expansion of the Mycobacterium Tuberculosis PE and PPE Multigene Families and Their Association with the Duplication of the ESAT-6 (esx) Gene Cluster Regions. BMC Evolutionary Biology, 6, 95.
http://dx.doi.org/10.1186/1471-2148-6-95
[9] Gordon, S.V., Eiglmeier, K., Brosch, R., Garnier, T., Honoré, N., Barrell, B.G. and Cole, S.T. (2009) Chapter 5. Genomics of Mycobacterium Tuberculosis and Mycobacterium Leprae. In: Ratledge, C. and Dale, J., Eds., Mycobacteria: Molecular Biology and Virulence, Wiley-Blackwell, 93-109.
http://onlinelibrary.wiley.com/book/10.1002/9781444311433
[10] Adindla, S. and Guruprasad, L. (2003) Sequence Analysis Corresponding to the PPE and PE Proteins in Mycobacterium Tuberculosis and Other Genomes. Journal of Biosciences, 28, 169-179.
http://dx.doi.org/10.1007/BF02706216
[11] Brennan, M.J., Delogu, G., Chen, Y., Bardarov, S., Kriakov, J., Alavi, M. and Jacobs Jr., W.R. (2001) Evidence That Mycobacterial PE_PGRS Proteins Are Cell Surface Constituents That Influence Interactions with Other Cells. Infection and Immunity, 69, 7326-7333.
http://dx.doi.org/10.1128/IAI.69.12.7326-7333.2001
[12] Espitia, C., Laclette, J.P., Mondragon-Palomino, M., Amador, A., Campuzano, J., Martens, A., Singh, M., Cicero, R., Zhang, Y. and Moreno, C. (1999) The PE-PGRS Glycine-Rich Proteins of Mycobacterium tuberculosis: A New Family of Fibronectin-Binding Proteins? Microbiology, 145, 3487-3495.
[13] Delogu, G., Pusceddu, C., Bua, A., Fadda, G., Brennan, M.J. and Zanetti, S. (2004) Rv1818c-Encoded PE_PGRS Protein of Mycobacterium tuberculosis Is Surface Exposed and Influences Bacterial Cell Structure. Molecular Microbiology, 52, 725-733. http://dx.doi.org/10.1111/j.1365-2958.2004.04007.x
[14] Delogu, G. and Brennan, M.J. (2001) Comparative Immune Response to PE and PE_PGRS Antigens of Mycobacterium tuberculosis. Infection and Immunity, 69, 5606-5611.
http://dx.doi.org/10.1128/IAI.69.9.5606-5611.2001
[15] Singh, P.P., Parra, M., Cadieux, N. and Brennan, M.J. (2008) A Comparative Study of Host Response to Three Mycobacterium tuberculosis PE_PGRS Proteins. Microbiology, 154, 3469-3479.
http://dx.doi.org/10.1099/mic.0.2008/019968-0
[16] Delogu, G., Sanguinetti, M., Pusceddu, C., Bua, A., Brennan, M.J., Zanetti, S. and Fadda, G. (2006) PE_PGRS Proteins Are Differentially Expressed by Mycobacterium tuberculosis in Host Tissues. Microbes and Infection, 8, 2061- 2067. http://dx.doi.org/10.1016/j.micinf.2006.03.015
[17] Dheenadhayalan, V., Delogu, G., Sanguinetti, M., Fadda, G. and Brennan, M.J. (2006) Variable Expression Patterns of Mycobacterium tuberculosis PE_PGRS Genes: Evidence That PE_PGRS16 and PE_PGRS26 Are Inversely Regulated in Vivo. Journal of Bacteriology, 188, 3721-3725.
http://dx.doi.org/10.1128/JB.188.10.3721-3725.2006
[18] Li, Y., Miltner, E., Wu, M., Petrofsky, M. and Bermudez, L.E. (2005) A Mycobacterium avium PPE Gene Is Associated with the Ability of the Bacterium to Grow in Macrophages and Virulence in Mice. Cellular Microbiology, 7, 539-548. http://dx.doi.org/10.1111/j.1462-5822.2004.00484.x
[19] Voskuil, M.I., Schnappinger, D., Rutherford, R., Liu, Y. and Schoolnik, G.K. (2004) Regulation of the Mycobacterium tuberculosis PE/PPE Genes. Tuberculosis, 84, 256-262.
http://dx.doi.org/10.1016/j.tube.2003.12.014
[20] Brodin, P., Rosenkrands, I., Andersen, P., Cole, S.T. and Brosch, R. (2004) ESAT-6 Proteins: Protective Antigens and Virulence Factors? Trends in Microbiology, 12, 500-508.
http://dx.doi.org/10.1016/j.tim.2004.09.007
[21] Marri, P.R., Bannantine, J.P. and Golding, G.B. (2006) Comparative Genomics of Metabolic Pathways in Mycobacterium Species: Gene Duplication, Gene Decay and Lateral Gene Transfer. FEMS Microbiology Reviews, 30, 906-925. http://dx.doi.org/10.1111/j.1574-6976.2006.00041.x
[22] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389- 3402. http://dx.doi.org/10.1093/nar/25.17.3389
[23] Edgar, R.C. (2004) MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Research, 32, 1792-1797. http://dx.doi.org/10.1093/nar/gkh340
[24] Yang, Z. and Nielsen, R. (2000) Estimating Synonymous and Nonsynonymous Substitution Rates under Realistic Evolutionary Models. Molecular Biology and Evolution, 17, 32-43.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026236
[25] Zhang, Z., Li, J. and Yu, J. (2006) Computing Ka and Ks with a Consideration of Unequal Transitional Substitutions. BMC Evolutionary Biology, 6, 44. http://dx.doi.org/10.1186/1471-2148-6-44
[26] Zhang, Z., Li, J., Zhao, X.Q., Wang, J., Wong, G.K. and Yu, J. (2006) KaKs_Calculator: Calculating Ka and Ks through Model Selection and Model Averaging. Genomics, Proteomics & Bioinformatics, 4, 259-263. http://dx.doi.org/10.1016/S1672-0229(07)60007-2
[27] Drummond, A.J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T. and Wilson, A. (2009) Geneious v4.6.
[28] Guindon, S. and Gascuel, O. (2003) A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52, 696-704.
http://dx.doi.org/10.1080/10635150390235520
[29] Tamura, K. and Nei, M. (1993) Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Molecular Biology and Evolution, 10, 512-526.
[30] Bateman, A., Coil, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S. and Sonnhammer, E.L.L. (2004) The Pfam Protein Families Database. Nucleic Acids Research, 32, D138-D141. http://dx.doi.org/10.1093/nar/gkh121
[31] Langille, M.G. and Brinkman, F.S. (2009) Island Viewer: An Integrated Interface for Computational Identification and Visualization of Genomic Islands. Bioinformatics, 25, 664-665.
http://dx.doi.org/10.1093/bioinformatics/btp030
[32] Stinear, T.P., Seemann, T., Harrison, P.F., Jenkin, G.A., Davies, J.K., Johnson, P.D., Abdellah, Z., Arrowsmith, C., Chillingworth, T., Churcher, C., Clarke, K., Cronin, A., Davis, P., Goodhead, I., Holroyd, N., Jagels, K., Lord, A., Moule, S., Mungall, K., Norbertczak, H., Quail, M.A., Rabbinowitsch, E., Walker, D., White, B., Whitehead, S., Small, P.L., Brosch, R., Ramakrishnan, L., Fischbach, M.A., Parkhill, J. and Cole, S.T. (2008) Insights from the Complete Genome Sequence of Mycobacterium marinum on the Evolution of Mycobacterium tuberculosis. Genome Research, 18, 729-741.
http://dx.doi.org/10.1101/gr.075069.107
[33] Stinear, T.P., Seemann, T., Pidot, S., Frigui, W., Reysset, G., Garnier, T., Meurice, G., Simon, D., Bouchier, C., Ma, L., Tichit, M., Porter, J.L., Ryan, J., Johnson, P.D., Davies, J.K., Jenkin, G.A., Small, P.L., Jones, L.M., Tekaia, F., Laval, F., Daffe, M., Parkhill, J. and Cole, S.T. (2007) Reductive Evolution and Niche Adaptation Inferred from the Genome of Mycobacterium ulcerans, the Causative Agent of Buruli Ulcer. Genome Research, 17, 192-200. http://dx.doi.org/10.1101/gr.5942807
[34] Primm, T.P., Lucero, C.A. and Falkinham 3rd, J.O. (2004) Health Impacts of Environmental Mycobacteria. Clinical Microbiology Reviews, 17, 98-106. http://dx.doi.org/10.1128/CMR.17.1.98-106.2004
[35] Mahairas, G.G., Sabo, P.J., Hickey, M.J., Singh, D.C. and Stover, C.K. (1996) Molecular Analysis of Genetic Differences between Mycobacterium bovis BCG and Virulent M. bovis. Journal of Bacteriology, 178, 1274-1282.
[36] Gutierrez, M.C., Brisse, S., Brosch, R., Fabre, M., Omais, B., Marmiesse, M., Supply, P. and Vincent, V. (2005) Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis. PLoS Pathogens, 1, e5. http://dx.doi.org/10.1371/journal.ppat.0010005

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.