Quantum Chemical Studies of Endofullerenes (M@C60) Where M = H2O, Li+, Na+, K+, Be2+, Mg2+, and Ca2+

Abstract

Quantum chemical calculations were performed to investigate the structural and electronic properties of seven endofullerenes. The interaction energies indicated that all of the chemical species are stable inside the fullerene for each complex. The ionization potential and electron affinity values suggest that the endofullerenes consisting of alkaline earth ions are the most reactive and that the dipole moment decreased according to the following order: Be2+@C60 (4.75) > Mg2+@C60 (3.14) > Ca2+@C60 (2.24) > Li+@C60 (1.26) > Na+@C60 (0.76) > H2O@C60 (0.24) > K+@C60 (0.00 Debye). These results imply that the solubility of endofullerenes in a polar solvent may increase from H2O@C60 to Be2+@C60. The energetic gaps indicate that Be2+@C60 and Mg2+@C60 possess a higher electrical conductivity, and the UV spectra show a shift in the bands to the visible light region. The results of this work may be useful for the development of new endofullerenes.

Share and Cite:

Oliveira, O. and Gonçalves, A. (2014) Quantum Chemical Studies of Endofullerenes (M@C60) Where M = H2O, Li+, Na+, K+, Be2+, Mg2+, and Ca2+. Computational Chemistry, 2, 51-58. doi: 10.4236/cc.2014.24007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (2003) C60: Buckminsterfullerene. Nature, 318, 162-163. http://dx.doi.org/10.1038/318162a0
[2] Bosi, S., Ros, T.D., Spalluto, G. and Prato, M. (2003) Fullerene Derivatives: An Attractive Tool for Biological Applications. European Journal of Medicinal Chemistry, 38, 913-923.
http://dx.doi.org/10.1016/j.ejmech.2003.09.005
[3] Bakry, R., Vallant, R.M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C.W. and Bonn, G.K. (2007) Medicinal Applications of Fullerenes. International Journal of Nanomedicine, 2, 639-649.
[4] Anilkumar, P., Lu, F., Cao, L., Luo, P.G., Liu, J.H., Sahu, S., Tackett, K.N., Wang, Y. and Sun, Y.P. (2011) Fullerenes for Applications in Biology and Medicine. Current Medicinal Chemistry, 18, 2045-2059. http://dx.doi.org/10.2174/092986711795656225
[5] Blom, P.W.M., Mihailetchi, V.D., Koster, L.J.A. and Markov, D.E. (2007) Device Physics of Polymer: Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 19, 1551-1566.
http://dx.doi.org/10.1002/adma.200601093
[6] Deibel, C. and Dyakonov, V. (2010) Polymer-Fullerene Bulk Heterojunction Solar Cells. Reports on Progress in Physics, 73, Article ID: 096401. http://dx.doi.org/10.1088/0034-4885/73/9/096401
[7] Varotto, A., Treat, N.D., Jo, J., Shuttle, C.G., Batara, N.A., Brunetti, F.G., Seo, J.H., Chabinyc, M.L., Hawker, C.J., Heeger, A.J. and Wudl, F. (2011)1,4-Fullerene Derivatives: Tuning the Properties of the Electron Transporting Layer in Bulk-Heterojunction Solar Cells. Angewandte Chemie, 50, 5166-5169.
[8] Liu, B., Png, R.Q., Zhao, L.H., Chua, L.L., Friend, R.H. and Ho, P.K. (2012) High Internal Quantum Efficiency in Fullerene Solar Cells Based on Crosslinked Polymer Donor Networks. Nature Communications, 3, 1321. http://dx.doi.org/10.1038/ncomms2211
[9] Tanigaki, K., Ebbesen, T.W., Saito, S., Mizuki, J., Tsai, J.S., Kubo, Y. and Kuroshima, S. (1991) Superconductivity at 33 K in CsxRbyC60. Nature, 352, 222. http://dx.doi.org/10.1038/352222a0
[10] Buntar, V. and Weber, H.W. (1996) Magnetic Properties of Fullerene Superconductors. Superconductor Science and Technology, 9, 599-615. http://dx.doi.org/10.1088/0953-2048/9/8/001
[11] Hott, R., Kleiner, R., Wolf, T. and Zwicknagl, G. (2013) Review on Superconducting Materials. Wiley-VCH, Hoboken.
[12] Chai, Y., Guo, T., Jin, C.M., Haufler, R.E., Chibante, L.P.F., Fure, J., Wang, L.H., Alford, J.M. and Smalley, R.E. (1991) Fullerenes with Metals Inside. Journal of Physical Chemistry, 95, 7564-7568.
http://dx.doi.org/10.1021/j100173a002
[13] Bethune, D.S., Johnson, R.D., Salem, J.R., Vries, M.S. and Yannoni, C.S. (1993) Atoms in Carbon Cages: The Structure and Properties of Endohedral Fullerenes. Nature, 366, 123-128.
http://dx.doi.org/10.1038/366123a0
[14] Hirata, T., Hatakeyama, R., Mieno, T. and Sato, N. (1996) Production and Control of K-C60 Plasma for Material Processing. Journal of Vacuum Science & Technology A, 14, 615-619.
http://dx.doi.org/10.1116/1.580154
[15] Chaur, M.N., Melin, F., Ortiz, A.L. and Echegoyen, L. (2009) Chemical, Electrochemical, and Structural Properties of Endohedral Metallofullerenes. Angewandte Chemie International Edition, 48, 7514-7538. http://dx.doi.org/10.1002/anie.200901746
[16] Heath, J.R., O’Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Tittel, F.K. and Smalley, R.E. (1985) Lanthanum Complexes of Spheroidal Carbon Shells. Journal of the American Chemical Society, 107, 7779-7780. http://dx.doi.org/10.1021/ja00311a102
[17] Aoyagi, S., Nishibori, E., Sawa, H., Sugimoto, K., Takata, M., Miyata, Y., Kitaura, R., Shinohara, H., Okada, H., Sakai, T., et al. (2010) A Layered Ionic Crystals of Polar Li@C60 Superatoms. Nature Chemistry, 2, 678-683. http://dx.doi.org/10.1038/nchem.698
[18] Okada, H., Komuro, T., Sakai, T., Matsuo, Y., Ono, Y., Omote, K., Yokoo, K., Kawachi, K., Kasama, Y., Ono, S., et al. (2012) Preparation of Endohedral Fullerene Containing Lithium (Li@C60) and Isolation as Pure Hexafluorophosphate Salt ([Li+@C60][PF6-]). RSC Advances, 2, 10624-10631.
http://dx.doi.org/10.1039/c2ra21244g
[19] Murata, Y., Murata, M. and Komatsu, K. (2003) 100% Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H2@C60. Journal of the American Chemical Society, 125, 7152-7153. http://dx.doi.org/10.1021/ja0354162
[20] Komatsu, K., Murata, M. and Murata, Y. (2005) Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science, 307, 238-240. http://dx.doi.org/10.1126/science.1106185
[21] Ito, S., Shimotani, H., Takagi, H. and Dragoe, N. (2008) On the Synthesis Conditions of N and N2 Endohedral Fullerenes. Fullerenes, Nanotubes and Carbon Nanostructures, 16, 206-213.
[22] Sauders, M., Cross, R.J., Jimenez-Vazquez, H.A., Shimshi, R. and Khong, A. (1996) Noble Gas Atoms inside Fullerences. Science, 271, 1693-1697. http://dx.doi.org/10.1126/science.271.5256.1693
[23] Peng, R.F., Chu, S.J., Hyang, Y.M., Yu, H.J., Wang, T.S., Jin, B., Fu, Y.B. and Wang, C.R. (2009) Preparation of He@C60 and He2@C60 by an Explosive Method. Journal of Materials Chemistry, 19, 3602-3605. http://dx.doi.org/10.1039/b904234b
[24] Kurotobi, K. and Murata, Y. (2011) A Single Molecule of Water Encapsulated in Fullerene C60. Science, 333, 613-616.
[25] Beduz, C., Carravetta, M., Chen, J.C., Consistrè, M., Denning, M., Frunzi, M., et al. (2012) Quantum Rotation of Ortho and Para-Water Encapsulated in a Fullerene Cage. Proceedings of the National Academy of Sciences of the United States of America, 109, 12894-12898.
http://dx.doi.org/10.1073/pnas.1210790109
[26] Aoyagi, S., Hoshino, N., Akutagawa, T., Sado, Y., Kitaura, R., Shinohrara, H., Sugimoto, K., Zhang, R. and Murata, Y. (2014) A Cubic Dipole Lattice of Water Molecules Trapped inside Carbon Cages. Chemical Communications, 50, 524-526. http://dx.doi.org/10.1039/c3cc46683c
[27] Popov, A.A., Yang, S. and Dunsch, L. (2013) Endohedral Fullerenes. Chemical Reviews, 113, 5989-6113. http://dx.doi.org/10.1021/cr300297r
[28] Noguchi, Y., Sugino, O., Okada, H. and Matsuo, Y. (2013) First-Principles Investigation on Structural and Optical Properties of M+@C60 (Where M = H, Li, Na, and K). Journal of Physical Chemistry C, 117, 15362-15368. http://dx.doi.org/10.1021/jp4041259
[29] Malani, H. and Zhang, D. (2013) Theoretical Insight for the Metal Insertion Pathway of Endohedral Alkali Metal Fullerenes. Journal of Physical Chemistry A, 117, 3521-3528.
http://dx.doi.org/10.1021/jp4007697
[30] Cioslowski, J. (1991) Endohedral Chemistry: Electronic Structures of Molecules Trapped inside the C60 Cage. Journal of the American Chemical Society, 113, 4139-4141.
http://dx.doi.org/10.1021/ja00011a013
[31] Cioslowski, J. and Fleischmann, E.D. (1991) Endohedral Complexes: Atoms and Ions inside the C60 Cage. Journal of Chemical Physics, 94, 3730-3734. http://dx.doi.org/10.1063/1.459744
[32] Hira, A.S. and Ray, A.K. (1995) Interaction Sites of a Na+ Ion and a Na Atom with a C60 Molecule. Physical Review A, 52, 141-148. http://dx.doi.org/10.1103/PhysRevA.52.141
[33] Santos, J.D., Longo, E., Banja, M.E., Espinoza, V.A.A., Flores, J.V. and Taft, C.A. (2005) Semi-Empirical Studies of Alkaline Metals-Fullerene MxC60, M@C60 Interactions. Journal of Molecular Structure: THEOCHEM, 713, 161-169. http://dx.doi.org/10.1016/j.theochem.2004.08.055
[34] Ohtsuki, T., Masumoto, K., Ohno, K., Maruyma, Y., Kawazoe, Y., Sueki, K. and Kikuchi, K. (1996) Insertion of Be Atoms in C60 Fullerene Cages: Be@C60. Physical Review Letters, 77, 3522-3524.
http://dx.doi.org/10.1103/PhysRevLett.77.3522
[35] Lyras, A. and Bachau, H. (2005) Electronic Correlation Effects in a Model of Endohedral Mg (Mg@C60). Journal of Physics B: Atomic, Molecular and Optical Physics, 38, 1119-1131.
http://dx.doi.org/10.1088/0953-4075/38/8/004
[36] Stewart, J.J.P. (2013) Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. Journal of Molecular Modeling, 19, 1-32. http://dx.doi.org/10.1007/s00894-012-1667-x
[37] Stewart, J.J.P. (2012) MOPAC2012, Stewart Computational Chemistry. Colorado Springs, CO.
HTTP://OpenMOPAC.net
[38] Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993) General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry, 14, 1347-1363. http://dx.doi.org/10.1002/jcc.540141112
[39] Lee, C., Yang, W. and Parr, R.G. (1998) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
[40] Becke, A.D. (1993) Density Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652. http://dx.doi.org/10.1063/1.464913
[41] Tomasi, J., Mennucci, B. and Cammi, R. (2005) Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105, 2999-3094. http://dx.doi.org/10.1021/cr9904009
[42] Dunlap, B.I., Ballester, J.L. and Schmidt, P.P. (1992) Interactions between Fullerene C60 and Endohedral Alkali Atoms. Journal of Physical Chemistry, 96, 9781-9787.
http://dx.doi.org/10.1021/j100203a038
[43] Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978) Electronegativity: The Density Functional Viewpoint. Journal of Chemical Physics, 68, 3801-3807. http://dx.doi.org/10.1063/1.436185
[44] Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516.
http://dx.doi.org/10.1021/ja00364a005
[45] Shameema, O., Ramachandran, C.N. and Sathyamurthy, N. (2006) Blue Shift in X-H Stretching Frequency of Molecules Due to Confinement. Journal of Physical Chemistry A, 110, 2-4.
http://dx.doi.org/10.1021/jp056027s
[46] Benning, P.J., Martins, J.L., Weaver, J.H., Chibante, L.P.F. and Smalley, R.E. (1991) Electronic Structure of KxC60: Insulating, Metallic, and Superconducting Character. Science, 252, 1417-1419.
http://dx.doi.org/10.1126/science.252.5011.1417
[47] Takahashi, T., Susuzi, S., Morikawa, T., Katayama-Yoshida, H., Hasegawa, S., Inokuchi, H., Seki, K., Kikuchi, K., Suzuki, S., Ikemoto, K. and Ashiba, Y. (1992) Pseudo-Gap at the Fermi Level in K3C60 Observed by Photoemission and Inverse Photoemission. Physical Review Letters, 68, 1232.
http://dx.doi.org/10.1103/PhysRevLett.68.1232
[48] Lof, R.W., van Veendaal, M.A., Koopmans, B., Jonkman, H.T. and Sawatzky, G.A. (1992) Band Gap, Excitons, and Coulomb Interaction in Solid C60. Physical Review Letters, 68, 3924.
http://dx.doi.org/10.1103/PhysRevLett.68.3924
[49] Weaver, J.H. (1992) Electronic Structures of C60, C70 and the Fullerides: Photoemission and Inverse Photoemission Studies. Journal of Physics and Chemistry of Solids, 53, 1433-1447.
http://dx.doi.org/10.1016/0022-3697(92)90237-8
[50] Prylutskyy, Y.I., Durov, S.S., Bulavin, L.A., Adamenko, I., Moroz, K.O., Graja, A., Bogucki, A. and Scharff, P. (2001) C 1s Ionisation Potential and Energy Referencing for Solid C60 Films on Metal Surfaces. Fullerene Science and Technology, 9, 167-174. http://dx.doi.org/10.1081/FST-100102964
[51] Braga, M., Larsson, S., Rosen, A. and Volosov, A. (1991) Electronic Transition in C60. On the Origin of the Strong Interstellar Absorption at 217nm. Astronomy and Astrophysics, 245, 232-238.
[52] Orlandi, G. and Negri, F. (2002) Electronic States and Transitions in C60 and C70 Fullerenes. Photochemical & Photobiological Sciences, 1, 289-308. http://dx.doi.org/10.1039/b200178k

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.