Effects of Copaiba Oil on Cyclophosphamide-Induced Teratogenesis in Mice

DOI: 10.4236/ajps.2014.523362   PDF   HTML   XML   3,774 Downloads   4,458 Views   Citations


Cyclophosphamide is an anti-neoplastic chemotherapy drug which, when administered to animals during the gestational period, provokes visceral, skeletal and external malformations. Copaiba oil obtained from Copaifera L. genus is traditionally used in popular medicine for its anti-inflammatory and antimicrobial activities. However, the effect of copaiba oil onteratogenesis remains unknown. This study aimed to investigate the possible protector effects of copaiba oil on the model of teratogenesis induced by cyclophosphamide in mice. Pregnant female Swiss mice were divided into 8 groups (n = 15). Three groups received copaiba oil, via gavage, in the following doses: 0.3 mL·Kg-1, 0.6 mL·Kg-1 and 0.9 mL·Kg-1 (b.w.), associated to phosphate-buffered saline (PBS), intraperitoneal (i.p.). The negative control group received medium chain triglyceride (MCT) and PBS. The positive control group received cyclophosphamide (30 mg·Kg-1 (b.w.)) and MCT. The three treatment groups called associated groups (A) received one of the doses of copaiba oil, via gavage and an associated dose of cyclophosphamide intraperitoneally. Copaiba oil presented a protective effect against teratogenesis induced by cyclophosphamide in the following skeletal structures: metacarpals, forepaws proximal phalanges, and tail vertebras. It also reduced the hydrocephalus frequency. These data suggest that copaiba oil could be a potential candidate for an anti-teratogenic agent.

Share and Cite:

Lourenço, A. , Baroneza, J. , Ramos, S. , Miguel, L. , Juliani, L. , Pic-Taylor, A. and Salles, M. (2014) Effects of Copaiba Oil on Cyclophosphamide-Induced Teratogenesis in Mice. American Journal of Plant Sciences, 5, 3464-3473. doi: 10.4236/ajps.2014.523362.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wells, P.G., Bhuller, Y., Chen, C.S., Jeng, W., Kasapinovic, S., Kennedy, J.C., Kim, P.M., Laposa, R.R., McCallum, G.P., Nicol, C.J., Parman, T., Wiley, M.J. and Wong, A.W. (2005) Molecular and Biochemical Mechanisms in Teratogenesis Involving Reactive Oxygen Species. Toxicology and Applied Pharmacology, 207, 354-366.
[2] Ornoy, A. (2007) Embryonic Oxidative Stress as a Mechanism of Teratogenesis with Special Emphasis on Diabetic Embryopathy. Reproductive Toxicology, 24, 31-41. http://dx.doi.org/10.1016/j.reprotox.2007.04.004
[3] Hales, B.F. (1981) Modification of the Mutagenicity and Teratogenicity of Cyclophosphamide in Rats with Inducers of the Cytochromes P-450. Teratology, 24, 1-11. http://dx.doi.org/10.1002/tera.1420240102
[4] Mirkes, P.E. and Little, S.A. (1998) Teratogen-Induced Cell Death in Postimplantation Mouse Embryos: Differential Tissue Sensitivity and Hallmarks of Apoptosis. Cell Death Differentiation, 5, 592-600.
[5] Manson, J.M. and Smith, C.C. (1977) Influence of Cyclophosphamide and 4-Ketocyclophosphamide on Mouse Limb Development. Teratology, 15, 291-299. http://dx.doi.org/10.1002/tera.1420150311
[6] Gomes-Carneiro, M.R., De-Oliveira, A.C., De-Carvalho, R.R., Araujo, I.B., Souza, C.A., Kuriyama, S.N. and Paumgartten, F.J. (2003) Inhibition of Cyclophosphamide-Induced Teratogenesis by Beta-Ionone. Toxicological Letters, 138, 205-213. http://dx.doi.org/10.1016/S0378-4274(02)00413-7
[7] Ashby, R., Davis, L., Dewhurst, B.B., Espinal, R., Penn, R.N. and Upshall, D.G. (1976) Aspects of the Teratology of Cyclophosphamide (NSC-26271). Cancer Treatment Reports, 60, 477-482.
[8] Park, D., Jeon, J.H., Shin, S., Joo, S.S., Kang, D.H., Moon, S.H., Jang, M.J., Cho, Y.M., Kim, J.W., Ji, H.J., Ahn, B., Oh, K.W. and Kim, Y.B. (2009) Green Tea Extract Increases Cyclophosphamide-Induced Teratogenesis by Modulating the Expression of Cytochrome P-450 mRNA. Reproductive Toxicology, 27, 79-84.
[9] Torchinsky, A., Savion, S., Gorivodsky, M., Shepshelovich, J., Zaslavsky, Z., Fein, A. and Toder, V. (1995) Cyclophosphamide-Induced Teratogenesis in ICR Mice: The Role of Apoptosis. Teratogenesis, Carcinogenesis and Mutagenesis, 15, 179-190. http://dx.doi.org/10.1002/tcm.1770150404
[10] Bailey, M.M., Sawyer, R.D., Behling, J.E., Boohaker, J.G., Hicks, J.G., O’Donnell, M.A., Stringer, K.R., Rasco, J.F. and Hood, R.D. (2005) Prior Exposure to Indole-3-Carbinol Decreases the Incidence of Specific Cyclophosphamide-Induced Developmental Defects in Mice. Birth Defects Research: Part B Developmental and Reproductive Toxicology, 74, 261-267. http://dx.doi.org/10.1002/bdrb.20046
[11] Umemura, K., Itoh, T., Hamada, N., Fujita, Y., Akao, Y., Nozawa, Y., Matsuura, N., Iinuma, M. and Ito, M. (2008) Preconditioning by Sesquiterpene Lactone Enhances H2O2-Induced Nrf2/ARE Activation. Biochemical and Biophysical Research Communications, 368, 948-954. http://dx.doi.org/10.1016/j.bbrc.2008.02.018
[12] Araújo Júnior, F.A., Braz, M.N. and Rocha Neto, O.G., Costa, F.D. and Brito, M.V.H. (2005) Efeito do óleo de copaíba nas aminotransferases de ratos submetidos à isquemia e reperfusão hepática come sem pré-condicionamento isquêmico. Acta Cirurgica Brasileira, 20, 93-99. http://dx.doi.org/10.1590/S0102-86502005000100013
[13] Salewski, E. (1964) Färbemethoden Zum Makroskopischen Nachweis von Implantationsstellen am Uterus der Ratte. Naunyn-Schmiedeberg’s Archivesof Pharmacology, 247, 367. http://dx.doi.org/10.1007/BF02308461
[14] Calderon, I.M.P., Rudge, M.V.C., Brasil, M.A.M. and Henry, M.A.C.A. (1992) Diabete e gravidez experimental em ratas: 1. Indução do diabete, obtenção e evolução da prenhez. Acta Cirúrgica Brasileira, 7, 142-146.
[15] Staples, R.E. and Schnell, V.L. (1964) Refinements in Rapid Clearing Technic in the KOH-Alizarin Red S Method for Fetal Bone. Stain Technology, 39, 61-63.
[16] Barrow, M.V. and Taylor, W.J. (1969) A Rapid Method for Detecting Malformations in Rat Fetuses. Journal of Morphology, 127, 291-306. http://dx.doi.org/10.1002/jmor.1051270303
[17] Wilson, J.G. (1965) Methods for Administering Agents and Detecting Malformations in Experimental Animals. In: Wilson, J.G. and Warkany, J., Eds., Teratology: Principals and Techniques, University of Chicago Press, Chicago, 262-277.
[18] Taylor, P. (1986) Practical Teratology. Academic Press, London.
[19] Desesso, J.M., Scialli, A.R. and Goeringer, G.C. (1994) D-Mannitol, a Specific Hydroxyl Free Radical Scavenger, Reduces the Developmental Toxicity of Hydroxyurea in Rabbits. Teratology, 49, 248-259.
[20] Haque, R., Bin-Hafeez, B., Parvez, S., Pandey, S., Sayeed, I., Ali, M. and Raisuddin, S. (2003) Aqueous Extract of Walnut (Juglans regia L.) Protects Mice against Cyclophosphamide-Induced Biochemical Toxicity. Human & Experimental Toxicology, 22, 473-480. http://dx.doi.org/10.1191/0960327103ht388oa
[21] Veiga Junior, V.F., Rosas, E.C., Carvalho, M.V., Henriques, M.G. and Pinto, A.C. (2007) Chemical Composition and Anti-Inflammatory Activity of Copaiba Oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—A Comparative Study. Journal of Ethnopharmacology, 112, 248-254.
[22] Kim, J.Y., Oh, T.H., Kim, B.J., Kim, S.S., Lee, N.H. and Hyun, C.G. (2008) Chemical Composition and Anti-Inflammatory Effects of Essential Oil from Farfugium japonicum Flower. Journal of Oleo Sciences, 57, 623-628.
[23] Chaieb, K., Zmantar, T., Ksouri, R., Hajlaoui, H., Mahdouani, K., Abdelly, C. and Bakhrouf, A. (2007) Antioxidant Properties of the Essential Oil of Eugenia Caryophyllata and Its Antifungal Activity against a Large Number of Clinical Candida Species. Mycoses, 50, 403-406. http://dx.doi.org/10.1111/j.1439-0507.2007.01391.x
[24] Lee, S.R., Kim, M.R., Yon, J.M., Baek, I.J., Park, C.G., Lee, B.J., Yun, Y.W. and Nam, S.Y. (2009) Black Ginseng Inhibits Ethanol-Induced Teratogenesis in Cultured Mouse Embryos through Its Effects on Antioxidant Activity. Toxicology in Vitro, 23, 47-52. http://dx.doi.org/10.1016/j.tiv.2008.10.001
[25] Costa-Lotufo, L.V., Cunha, G.M.A., Farias, P.A.M., Viana, G.S.B., Cunha, K.M.A., Pessoa, C., Moraes, M.O., Silveira, E.R., Gramosa, N.V. and Rao, V.S.N. (2002) The Cytotoxic and Embryotoxic Effects of Kaurenoic Acid, a Diterpene Isolated from Copaifera langsdorffii Oleo-Resin. Toxicon, 40, 1231-1234.
[26] Carvalho, J.C., Cascon, V., Possebon, L.S., Morimoto, M.S., Cardoso, L.G., Kaplan, M.A. and Gilbert, B. (2005) Topical Antiinflammatory and Analgesic Activities of Copaifera duckei Dwyer. Phytotherapy Research, 19, 946-950.
[27] Tincusi, B.M., Jiménez, I.A., Bazzocchi, I.L., Moujir, L.M., Mamani, Z.A., Barroso, J.P., Ravelo, A.G. and Hernández, B.V. (2002) Antimicrobial Terpenoids from the Oleoresin of the Peruvian Medicinal Plant Copaifera paupera. Planta Medica, 68, 808-812. http://dx.doi.org/10.1055/s-2002-34399
[28] Gomes, N.M., Rezende, C.M., Fontes, S.P., Matheus, M.E. and Fernandes, P.D. (2007) Antinociceptive Activity of Amazonian Copaiba Oils. Journal of Ethnopharmacology, 109, 486-492. http://dx.doi.org/10.1016/j.jep.2006.08.018
[29] Santos, A.O., Ueda-Nakamura, T., Dias Filho, B.P., Veiga Junior, V.F., Pinto, A.C. and Nakamura, C.V. (2008) Antimicrobial Activity of Brazilian Copaiba Oils Obtained from Different Species of the Copaifera genus. Memórias do Instituto Oswaldo Cruz, 103, 277-281.
[30] Lima Silva, J.J., Guimarães, S.B., da Silveira, E.R., de Vasconcelos, P.R., Lima, G.G., Torres, S.M. and de Vasconcelos, R.C. (2009) Effects of Copaifera langsdorffii Desf. on Ischemia-Reperfusion of Randomized Skin Flaps in Rats. Aesthetic Plastic Surgery, 33, 104-109. http://dx.doi.org/10.1007/s00266-008-9263-2
[31] Sachetti, C.G., de Carvalho, R.R., Paumgartten, F.J.R., Lameira, O.A. and Caldas, E.D. (2011) Developmental Toxicity of Copaiba Tree (Copaifera reticulata Ducke, Fabaceae) Oleoresin in Rat. Food and Chemical Toxicology, 49, 1080-1085. http://dx.doi.org/10.1016/j.fct.2011.01.015
[32] Jang, D.S., Min, H.Y., Kim, M.S., Han, A.R., Windono, T., Jeohn, G.H., Kang, S.S., Lee, S.K. and Seo, E.K. (2005) Humulene Derivatives from Zingiber zerumbet with the Inhibitory Effects on Lipopolysaccharide-Induced Nitric Oxide Production. Chemical and Pharmaceutical Bulletin, 53, 829-831. http://dx.doi.org/10.1248/cpb.53.829
[33] Farag, R.S., Shalaby, A.S., El-Baroty, G.A., Ibrahim, N.A., Ali, M.A. and Hassan, E.M. (2004) Chemical and Biological Evaluation of the Essential Oils of Different Melaleuca Species. Phytotherapy Research, 18, 30-35.
[34] Jirovetz, L., Buchbauer, G., Stoilova, I., Stoyanova, A., Krastanov, A. and Schmidt, E. (2006) Chemical Composition and Antioxidant Properties of Clover Leaf Essential Oil. Journal of Agricultural and Food Chemistry, 54, 6303-6307.
[35] Mimica-Dukic, N., Bozin, B., Sokovic, M. and Simin, N. (2004) Antimicrobial and Antioxidant Activities of Melissa officinalis L. (Lamiaceae) Essential Oil. Journal of Agricultural and Food Chemistry, 52, 2485-2489.
[36] Hosako, H., Little, S.A., Barrier, M. and Mirkes, P.E. (2007) Teratogen-Induced Activation of p53 in Early Postimplantation Mouse Embryos. Toxicological Sciences, 95, 257-269. http://dx.doi.org/10.1093/toxsci/kfl143
[37] Slott, V.L. and Hales, B.F. (1987) Enhancement of the Embryotoxicity of Acrolein, but Not Phosphoramide Mustard, by Glutathione Depletion in Rat Embryos in Vitro. Biochemical Pharmacology, 36, 2019-2025.
[38] Little, S.A. and Mirkes, P.E. (2002) Teratogen-Induced Activation of Caspase-9 and the Mitochondrial Apoptotic Pathway in Early Postimplantation Mouse Embryos. Toxicology and Applied Pharmacology, 181, 142-151.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.