Wolkers, W., McCready, S., Brandt, W., Lindsey, G. and Hoekstra, F. (2001) Isolation and Characterization of a D-7 LEA Protein from Pollen That Stabilizes Glasses in Vitro. Biochimica et Biophysica Acta, 1544, 196-206.
http://dx.doi.org/10.1016/S0167-4838(00)00220-X [81] Kushwaha, R., Downie, A.B. and Payne, C.M. (2013) Uses of Phage Display in Agriculture: Sequence Analysis and Comparative Modeling of Late Embryogenesis Abundant Client Proteins Suggest Protein-Nucleic Acid Binding Functionality. Computational and Mathematical Methods in Medicine, 2013, 1-11. http://dx.doi.org/10.1155/2013/470390 [82] Wise, M. (2003) LEAping to Conclusions: A Computational Reanalysis of Late Embryogenesis Abundant Proteins and Their Possible Roles. BMC Bioinformatics, 4, 52. http://dx.doi.org/10.1186/1471-2105-4-52 [83] Gentile, F., Amodeo, P., Febbraio, F., Picaro, F., Motta, A., Formisano, S. and Nucci, R. (2002) SDS-Resistant Active and Thermostable Dimers Are Obtained from the Dissociation of Homotetrameric Glycosidase from Hyperthermophilic Sulfolobus solfataricus in SDS: Stabilizinz Role of the A-C Intermonomeric Interface. The Journal of Biological Chemistry, 277, 44050-44060. http://dx.doi.org/10.1074/jbc.M206761200 [84] McCubbin, W., Kay, C. and Lane, B. (1985) Hydrodynamic and Optical Properties of the Wheat Germ Em Protein. Biochemistry and Cell Biology, 63, 803-811. http://dx.doi.org/10.1139/o85-102 [85] Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M. and Romero, P. (2001) Intrinsically Disordered Protein. Journal of Molecular Graphics and Modelling, 19, 26-59. http://dx.doi.org/10.1016/S1093-3263(00)00138-8 [86] Tompa, P. (2002) Intrinsically Unstructured Proteins. Trends in Biochemical Sciences, 27, 527-533.
http://dx.doi.org/10.1016/S0968-0004(02)02169-2 [87] Uversky, V., Gillespie, J. and Fink, A. (2000) Why Are “Natively Unfolded” Proteins Unstructured under Physiologic Conditions? Proteins, 41, 415-427.
http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 [88] Chakraborte, S., Meersman, F., Schierle, G.S., Bertoncini, C.W., McGee, B., Kaminski, C.F. and Tunnacliffe, A. (2010) Catalytic and Chaperone-Like Functions in an Intrinsically Disordered Protein Associated with Desiccation Tolerance. Proceedings of the National Academy of Sciences of the United States of America, 107, 16084-16089.
http://dx.doi.org/10.1073/pnas.1006276107 [89] Mouillon, J.M., Gustafsson, P. and Harryson, P. (2006) Structural Investigation of Disordered Stress Proteins. Comparison of Full-Length Dehydrins with Isolated Peptides of Their Conserved Segments. Plant Physiology, 141, 638-650. http://dx.doi.org/10.1104/pp.106.079848 [90] Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., Teyssier, E., Payet, N., Avelange-Macherel, M.H. and Macherel, D. (2007) Structure and Function of a Mitochondrial Late Embryogenesis Abundant Protein Are Revealed by Desiccation. The Plant Cell Online, 19, 1580-1589.
http://dx.doi.org/10.1105/tpc.107.050104 [91] Boudet, J., Buitink, J., Hoekstra, F., Rogniaux, H., Larre, C., Satour, P. and Leprince, O. (2006) Comparative Analysis of the Heat Stable Proteome of Radicles of Medicago truncatula Seeds during Germination Identifies Late Embryogenesis Abundant Proteins Associated with Desiccation Tolerance. Plant Physiology, 140, 1418-1436.
http://dx.doi.org/10.1104/pp.105.074039 [92] Koag, M.-C., Fenton, R.D., Wilkens, S. and Close, T.J. (2003) The Binding of Maize DHN1 to Lipid Vesicles. Gain of Structure and Lipid Specificity. Plant Physiology, 131, 309-316. http://dx.doi.org/10.1104/pp.011171 [93] Li, D. and He, X. (2009) Desiccation Induced Structural Alterations in a 66-Amino Acid Fragment of an Anhydrobiotic Nematode Late Embryogenesis Abundant (LEA) Protein. Biomacromolecules, 10, 1469-1477.
http://dx.doi.org/10.1021/bm9002688 [94] Olvera-Carrillo, Y., Reyes, J.L. and Covarrubias, A.A. (2011) Late Embryogenesis Abundant Proteins: Versatile Players in the Plant Adaptation to Water Limiting Environments. Plant Signaling & Behavior, 6, 586-589.
http://dx.doi.org/10.4161/psb.6.4.15042 [95] Manfre, A., Lanni, L. and Marcotte, W. (2006) The Arabidopsis Group 1 Late-Embryogenesis Abundant Protein ATEM6 Is Required for Normal Seed Development. Plant Physiology, 140, 140-149. http://dx.doi.org/10.1104/pp.105.072967 [96] Manfre, A.J., LaHatte, G.A., Climer, C.R. and Marcotte, W.R. (2009) Seed Dehydration and the Establishment of Desiccation Tolerance during Seed Maturation Is Altered in the Arabidopsis thaliana Mutant Atem6-1. Plant and Cell Physiology, 50, 243-253. http://dx.doi.org/10.1093/pcp/pcn185 [97] Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. (2001) Stress-Induced Accumulation and Tissue-Specific Localization of Dehydrins in Arabidopsis thaliana. Plant Molecular Biology, 45, 263-279.
http://dx.doi.org/10.1023/A:1006469128280 [98] Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M. and Masmoudi, K. (2007) Overexpression of Wheat Dehydrin DHN-5 Enhances Tolerance to Salt and Osmotic Stress in Arabidopsis thaliana. Plant Cell Reports, 11, 2017-2026. http://dx.doi.org/10.1007/s00299-007-0412-x [99] Rorat, T., Szabala, B., Grygorowicz, W., Wojtowicz, B., Yin, Z. and Rey, P. (2006) Expression of SK3-Type Dehydrin in Transporting Organs Is Associated with Cold Acclimation in Solanum Species. Planta, 224, 205-221.
http://dx.doi.org/10.1007/s00425-005-0200-1 [100] Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. (1998) Accumulation of an Acidic Dehydrin in the Vicinity of the Plasma Membrane during Cold Acclimation of Wheat. The Plant Cell Online, 10, 623-638. http://dx.doi.org/10.1105/tpc.10.4.623 [101] Houde, M., Dhindsa, R.S. and Sarhan, F. (1992) A Molecular Marker to Select for Freezing Tolerance in Gramineae. Molecular and General Genetics, 234, 43-48. [102] Rorat, T., Grygorowicz, W.J., Irzykowski, W. and Rey, P. (2004) Expression of KS-Type Dehydrins Is Primarily Regulated by Factors Related to Organ Type and Leaf Developmental Stage during Vegetative Growth. Planta, 218, 878-885. http://dx.doi.org/10.1007/s00425-003-1171-8 [103] Giordani, T., Natali, L., D’Ercole, A., Pugliesi, C., Fambrini, M., Vernieri, P., Vitagliano, C. and Cavallini, A. (1999) Expression of a Dehydrin Gene during Embryo Development and Drought Stress in ABA-Deficient Mutants of Sunflower (Helianthus annuus L). Plant Molecular Biology, 39, 739-748. http://dx.doi.org/10.1023/A:1006194720022 [104] Welling, A., Rinne, P., Vihera-Aarnio, A., Kontunen-Soppela, S., Heino, P. and Palva, E.T. (2004) Photoperiod and Temperature Differentially Regulate the Expression of Two Dehydrin Genes during Overwintering of Birch (Betula pubescens Ehrh.). Journal of Experimental Botany, 55, 507-516. http://dx.doi.org/10.1093/jxb/erh045 [105] Plana, M., Itarte, E., Eritja, R., Goday, A., Pagès, M. and Martínez, M.C. (1991) Phosphorylation of Maize RAB-17 Protein by Casein Kinase 2. The Journal of Biological Chemistry, 266, 22510-22514. [106] Riera, M., Figueras, M., Lopez, C., Goday, A. and Pages, M. (2004) Protein Kinase CK2 Modulates Developmental Functions of the Abscisic Acid Responsive Protein Rab17 from Maize. Proceedings of the National Academy of Sciences of the United States of America, 101, 9879-9884. http://dx.doi.org/10.1073/pnas.0306154101 [107] Borovskii, G., Stupnikova, I., Antipina, A., Vladimirova, S. and Voinikov, V. (2002) Accumulation of Dehydrin-Like Proteins in the Mitochondria of Cereals in Response to Cold, Freezing, Drought and ABA Treatment. BMC Plant Biology, 2, 5. http://dx.doi.org/10.1186/1471-2229-2-5 [108] Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. (2002) The Calcium-Binding Activity of a Vacuole-Associated, Dehydrin-Like Protein Is Regulated by Phosphorylation. Plant Physiology, 130, 675-687. http://dx.doi.org/10.1104/pp.002550 [109] Cattivelli, L. and Bartels, D. (1990) Molecular Cloning and Characterization of Cold-Regulated Genes in Barley. Plant Physiology, 93, 1504-1510. http://dx.doi.org/10.1104/pp.93.4.1504 [110] Hsing, Y., Chen, Z., Shih, M., Hsieh, J. and Chow, T. (1995) Unusual Sequences of Group 3 LEA mRNA Inducible by Maturation or Drying in Soybean Seeds. Plant Molecular Biology, 29, 863-868. http://dx.doi.org/10.1007/BF00041175 [111] Romo, S., Labrador, E. and Dopico, B. (2001) Water Stress-Regulated Gene Expression in Cicer arietinum Seedlings and Plants. Plant Physiology and Biochemistry, 39, 1017-1026. http://dx.doi.org/10.1016/S0981-9428(01)01318-3 [112] NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P.A. and Sarhan, F. (2002) Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses. Plant Physiology, 129, 1368-1381. http://dx.doi.org/10.1104/pp.001925 [113] Siddiqui, N.U., Chung, H.J., Thomas, T.L. and Drew, M.C. (1998) Abscisic Acid-Dependent and -Independent Expression of the Carrot Late-Embryogenesis-Abundant-Class Gene Dc3 in Transgenic Tobacco Seedlings. Plant Physiology, 118, 1181-1190. http://dx.doi.org/10.1104/pp.118.4.1181 [114] Curry, J., Morris, C.F. and Walker-Simmons, M.K. (1991) Sequence Analysis of a cDNA Encoding a Group 3 LEA mRNA Inducible by ABA or Dehydration Stress in Wheat. Plant Molecular Biology, 16, 1073-1076.
http://dx.doi.org/10.1007/BF00016078 [115] Ried, J.L. and Walker-Simmons, M.K. (1993) Group 3 Late-Embryogenesis-Abundant Protein in Desiccation-Tolerant Seedlings of Wheat (Triticum aestivum L.). Plant Physiology, 102, 125-131. http://dx.doi.org/10.1104/pp.102.1.125 [116] Roberts, J.K., DeSimone, N.A., Lingle, W.L. and Dure III, L. (1993) Cellular Concentrations and Uniformity of Cell-Type Accumulation of Two Lea Proteins in Cotton Embryos. The Plant Cell Online, 5, 769-780.
http://dx.doi.org/10.1105/tpc.5.7.769 [117] Marttila, S., Tenhola, T. and Mikkonen, A. (1996) A Barley (Hordeum vulgare L.) LEA3 Protein, HVA1, Is Abundant in Protein Storage Vacuoles. Planta, 199, 602-611. http://dx.doi.org/10.1007/BF00195193 [118] Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.H., Grunwald, D. and Macherel, D. (2005) Identification in Pea Seed Mitochondria of a Late-Embryogenesis Abundant Protein Able to Protect Enzymes from Drying. Plant Physiology, 137, 157-167. http://dx.doi.org/10.1104/pp.104.052480 [119] Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K. and Fujikawa, S. (2001) Cold Acclimation-Induced WAP27 Localized in Endoplasmic Reticulum in Cortical Parenchyma Cells of Mulberry Tree Was Homologous to Group 3 Late-Embryogenesis Abundant Proteins. Plant Physiology, 126, 1588-1597. http://dx.doi.org/10.1104/pp.126.4.1588 [120] Cohen, A., Plant, á.L., Moses, M.S. and Bray, E.A. (1991) Organ-Specific and Environmentally Regulated Expression of Two Abscisic Acid-Induced Genes of Tomato. Plant Physiology, 97, 1367-1374.
http://dx.doi.org/10.1104/pp.97.4.1367 [121] Delseny, M., Bies-Etheve, N., Carles, C., Hull, G., Vicient, C., Raynal, M., Grellet, F. and Aspart, L. (2001) Late Embryogenesis Abundant (LEA) Protein Gene Regulation during Arabidopsis Seed Maturation. Journal of Plant Physiology, 158, 419-427. http://dx.doi.org/10.1078/0176-1617-00353 [122] Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) Characterization of Two cDNAs (ERD10 and ERD14) Corresponding to Genes That Respond Rapidly to Dehydration Stress in Arabidopsis thaliana. Plant and Cell Physiology, 35, 225-231. [123] Maitra, N. and Cushman, J. (1994) Isolation and Characterization of a Drought-Induced Soybean cDNA Encoding a D95 Family Late-Embryogenesis-Abundant Protein. Plant Physiology, 106, 805-806.
http://dx.doi.org/10.1104/pp.106.2.805 [124] Zegzouti, H., Jones, B., Frasse, P., Marty, C., Maitre, B., Latché, A., Pech, J.C. and Bouzayen, M. (1999) Ethylene-Regulated Gene Expression in Tomato Fruit: Characterization of Novel Ethylene Responsive and Ripening-Related Genes Isolated by Differential Display. The Plant Journal, 18, 589-600.
http://dx.doi.org/10.1046/j.1365-313x.1999.00483.x [125] Niogret, M.F., Culiáñez-Macià, F.A., Goday, A., Albà, M.M. and Pagès, M. (1996) Expression and Cellular Localization of Rab28 mRNA and Rab28 Protein during Maize Embryogenesis. The Plant Journal, 9, 549-557.
http://dx.doi.org/10.1046/j.1365-313X.1996.09040549.x [126] Leprince, O. and Buitink, J. (2010) Desiccation Tolerance: From Genomics to the Field. Plant Science, 179, 554-564.
http://dx.doi.org/10.1016/j.plantsci.2010.02.011 [127] Goday, A., Jensen, A.B., Culianez-Macia, F.A., Alba, M., Figueras, M., Serratosa, M., Torrent, J. and Pagès, M. (1994) The Maize Abscisic Acid-Responsive Protein Rab17 Is Located in the Nucleus and Interacts with Nuclear Localization Signals. Plant Cell, 6, 351-336. http://dx.doi.org/10.1105/tpc.6.3.351 [128] Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S. and Masmoudi, K. (2011) Plant Dehydrins and Stress Tolerance: Versatile Proteins for Complex Mechanisms. Plant Signaling & Behavior, 6, 1503-1509.
http://dx.doi.org/10.4161/psb.6.10.17088 [129] Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frey, N.F.D. and Leung, J. (2008) An Update on Abscisic Acid Signaling in Plants and More. Molecular Plant, 1, 198-217.
http://dx.doi.org/10.1093/mp/ssm022 [130] Delahaie, J., Hundertmark, M., Bove, J., Leprince, O., Rogniaux, H. and Buitink, J. (2013) LEA Polypeptide Profiling of Recalcitrant and Orthodox Legume Seeds Reveals ABI3-Regulated LEA Protein Abundance Linked to Desiccation Tolerance. Journal of Experimental Botany, 14, 4559-4573. http://dx.doi.org/10.1093/jxb/ert274 [131] Guo, F., Liu, C., Xia, H., Bi, Y., Zhao, C., Zhao, S., Hou, L., Li, F. and Wang, X. (2013) Induced Expression of AtLEC1 and AtLEC2 Differentially Promotes Somatic Embryogenesis in Transgenic Tobacco Plants. PLoS ONE, 8, e71714.
http://dx.doi.org/10.1371/journal.pone.0071714 [132] Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.-H., Grunwald, D. and Macherel, D. (2005) Identification in Pea Seed Mitochondria of a Late-Embryogenesis Abundant Protein Able to Protect Enzymes from Drying. Plant Physiology, 137, 157-167. http://dx.doi.org/10.1104/pp.104.052480 [133] Reyes, J., Rodrigo, M.J., Colmenero-Flores, J., Gil, J.V., Garay-Arroyo, A., Campos, F., Salamini, F., Bartels, D. and Covarrubias, A. (2005) Hydrophilins from Distant Organisms Can Protect Enzymatic Activities from Water Limitation Effects in Vitro. Plant, Cell & Environment, 28, 709-718. http://dx.doi.org/10.1111/j.1365-3040.2005.01317.x [134] Chakrabortee, S., Boschetti, C., Walton, L.J., Sarkar, S., Rubinsztein, D.C. and Tunnacliffe, A. (2007) Hydrophilic Protein Associated with Desiccation Tolerance Exhibits Broad Protein Stabilization Function. Proceedings of the National Academy of Sciences of the United States of America, 104, 18073-18078.
http://dx.doi.org/10.1073/pnas.0706964104 [135] Goyal, K., Pinelli, C., Maslen, S.L., Rastogi, R.K., Stephens, E. and Tunnacliffe, A. (2005) Dehydration-Regulated Processing of Late Embryogenesis Abundant Protein in a Desiccation Tolerant Nematode. FEBS Letters, 579, 4093-4098. http://dx.doi.org/10.1016/j.febslet.2005.06.036 [136] Hatanaka, R., Hagiwara-Komoda, Y., Furuki, T., Kanamori, Y., Fujita, M., Cornette, R., Sakurai, M., Okuda, T. and Kikawada, T. (2013) An Abundant LEA Protein in the Anhydrobiotic Midge, PvLEA4, Acts as a Molecular Shield by Limiting Growth of Aggregating Protein Particles. Insect Biochemistry and Molecular Biology, 11, 1055-1067.
http://dx.doi.org/10.1016/j.ibmb.2013.08.004 [137] Nakayama, K., Okawa, K., Kakizaki, T., Honma, T., Itoh, H. and Inaba, T. (2007) Arabidopsis Cor15am Is a Chloroplast Stromal Protein That Has Cryoprotective Activity and Forms Oligomers. Plant Physiology, 144, 513-523.
http://dx.doi.org/10.1104/pp.106.094581 [138] Puhakainen, T., Hess, M., Makela, P., Svensson, J., Heino, P. and Palva, E. (2004) Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis. Plant Molecular Biology, 54, 743-753.
http://dx.doi.org/10.1023/B:PLAN.0000040903.66496.a4 [139] Egerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. (1997) Temporal Accumulation and Ultrastructural Localization of Dehydrins in Zea mays. Physiologia Plantarum, 101, 545-555.
http://dx.doi.org/10.1111/j.1399-3054.1997.tb01036.x [140] Koag, M.C., Fenton, R.D., Wilkens, S. and Close, T.J. (2003) The Binding of Maize DHN1 to Lipid Vesicles. Gain of Structure and Lipid Specificity. Plant Physiology, 131, 309-316. http://dx.doi.org/10.1104/pp.011171 [141] Koag, M.C., Wilkens, S., Fenton, R.D., Resnik, J., Vo, E. and Close, T.J. (2009) The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes. Plant Physiology, 150, 1503-1514. http://dx.doi.org/10.1104/pp.109.136697 [142] Eriksson, S.K., Kutzer, M., Procek, J., Grobner, G. and Harryson, P. (2011) Tunable Membrane Binding of the Intrinsically Disordered Dehydrin Lti30, a Cold-Induced Plant Stress Protein. The Plant Cell, 6, 2391-404l.
http://dx.doi.org/10.1105/tpc.111.085183 [143] Alsheikh, M., Svensson, J. and Randall, S. (2005) Phosphorylation Regulated Ion-Binding Is a Property Shared by the Acidic Subclass Dehydrins. Plant, Cell & Environment, 28, 1114-1122.
http://dx.doi.org/10.1111/j.1365-3040.2005.01348.x [144] Svensson, J., Palva, E.T. and Welin, B. (2000) Purification of Recombinant Arabidopsis thaliana Dehydrins by Metal Ion Affinity Chromatography. Protein Expression and Purification, 20, 169-178.
http://dx.doi.org/10.1006/prep.2000.1297 [145] Hara, M., Fujinaga, M. and Kuboi, T. (2005) Metal Binding by Citrus Dehydrin with Histidine-Rich Domains. Journal of Experimental Botany, 56, 2695-2703. http://dx.doi.org/10.1093/jxb/eri262 [146] Buitink, J. and Leprince, O. (2004) Glass Formation in Plant Anhydrobiotes: Survival in the Dry State. Cryobiology, 48, 215-228. http://dx.doi.org/10.1016/j.cryobiol.2004.02.011 [147] Lin, C. and Thomashow, M. (1992) DNA Sequence Analysis of a Complementary DNA for Cold Regulated Arabidopsis Gene cor15 and Characterization of the COR15 Polypeptide. Plant Physiology, 99, 519-525.
http://dx.doi.org/10.1104/pp.99.2.519 [148] Hara, M., Shinoda, Y., Tanaka, Y. and Kuboi, T. (2009) DNA Binding of Citrus Dehydrin Promoted by Zinc Ion. Plant, Cell & Environment, 32, 532-541. http://dx.doi.org/10.1111/j.1365-3040.2009.01947.x [149] Singh, J., Whitwill, S., Lacroix, G., Douglas, J., Dubuc, E., Allard, G., Keller, W. and Schernthaner, J.P. (2009) The Use of Group 3 LEA Proteins as Fusion Partners in Facilitating Recombinant Expression of Recalcitrant Proteins in E. coli. Protein Expression and Purification, 67, 15-22. http://dx.doi.org/10.1016/j.pep.2009.04.003 [150] Chakrabortee, S., Meersmanb, F., Schierlec, G.S.K., Bertoncinid, C.W., McGeea, B., Kaminskic, C.F. and Tunnacliffe, A. (2010) Catalytic and Chaperone-Like Functions in an Intrinsically Disordered Protein Associated with Desiccation Tolerance. Proceedings of the National Academy of Sciences, 107, 16084-16089.
http://dx.doi.org/10.1073/pnas.1006276107

  
comments powered by Disqus
AJPS Subscription
E-Mail Alert
AJPS Most popular papers
Publication Ethics & OA Statement
AJPS News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.