[1]
|
Abdehagh, N., Tezel, F.H. and Thibault, J. (2014) Separation Techniques in Butanol Production: Challenges and Developments (Review). Biomass and Bioenergy, 60, 222-246. http://dx.doi.org/10.1016/j.biombioe.2013.10.003
|
[2]
|
Abdehagh, N., Tezel, F.H. and Thibault, J. (2013) Adsorbent Screening for Biobutanol Separation by Adsorption: Kinetics, Isotherms and Competitive Effect of Other Compounds. Adsorption, 19, 1263-1272. http://dx.doi.org/10.1007/s10450-013-9566-8
|
[3]
|
Thompson, A.B., Cope, S.J., Swift, T.D. and Notestein, J.M. (2011) Adsorption of n-Butanol from Dilute Aqueous Solution with Grafted Calixarenes. Langmuir, 27, 11990-11998. http://dx.doi.org/10.1021/la202508q
|
[4]
|
Harvey, B.G. and Meylemans, H.A. (2011) The Role of Butanol in the Development of Sustainable Fuel Technologies. Journal of Chemical Technology & Biotechnology, 86, 2-9. http://dx.doi.org/10.1002/jctb.2540
|
[5]
|
Dellomonaco, C., Fava, F. and Gonzalez, R. (2010) The Path to Next Generation Bio-fuels: Successes and Challenges in the Era of Synthetic Biology. Microbial Cell Factories, 9, 3-17. http://dx.doi.org/10.1186/1475-2859-9-3
|
[6]
|
Dürre, P. (2007) Biobutanol: An Attractive Biofuel. Biotechnology Journal, 2, 1525-1534. http://dx.doi.org/10.1002/biot.200700168
|
[7]
|
Antoni, D., Zverlov, V.V. and Schwarz, W.H. (2007) Biofuels from Microbes (Mini Review). Applied Microbiology and Biotechnology, 77, 23-35. http://dx.doi.org/10.1007/s00253-007-1163-x
|
[8]
|
Qureshi, N., Hughes, S., Maddox, I.S. and Cotta, M.A. (2005) Energy-Efficient Recovery of Butanol from Model Solutions and Fermentation Broth by Adsorption. Bioprocess and Biosystems Engineering, 27, 215-222. http://dx.doi.org/10.1007/s00449-005-0402-8
|
[9]
|
Ezeji, T.C., Qureshi, N. and Blaschek, H.P. (2004) Butanol Fermentation Research: Upstream and Downstream Manipulations. Chemical Record, 4, 305-314. http://dx.doi.org/10.1002/tcr.20023
|
[10]
|
Thirmal, C. and Dahman, Y. (2012) Comparison of Existing Pretreatment, Saccharification, and Fermentation Processes for Butanol Production from Agricultural Residues. Canadian Journal of Chemical Engineering, 90, 745-761. http://dx.doi.org/10.1002/cjce.20601
|
[11]
|
Zheng, Y.N., Li, L.Z., Xian, M., Ma, Y.J., Yang, J.M., Xu, X. and He, D.Z. (2009) Problems with the Microbial Production of Butanol. Journal of Industrial Microbiology and Biotechnology, 36, 1127-1138. http://dx.doi.org/10.1007/s10295-009-0609-9
|
[12]
|
Wu, Y.D., Xue, C., Chen, L.J. and Bai, F.W. (2013) Effect of Zinc Supplementation on Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum. Journal of Biotechnology, 165, 18-21. http://dx.doi.org/10.1016/j.jbiotec.2013.02.009
|
[13]
|
Lu, C., Zhao, J., Yang, S.T. and Wei, D. (2012) Fed-Batch Fermentation for n-Butanol Production from Cassava Bagasse Hydrolysate in a Fibrous Bed Bioreactor with Continuous Gas Stripping. Bioresource Technology, 104, 380-387. http://dx.doi.org/10.1016/j.biortech.2011.10.089
|
[14]
|
Sharma, P. and Chung, W.J. (2011) Synthesis of MEL Type Zeolite with Different Kinds of Morphology for the Recovery of 1-Butanol from Aqueous Solution. Desalination, 275, 172-180. http://dx.doi.org/10.1016/j.desal.2011.02.049
|
[15]
|
Oudshoorn, A., van der Wielen, L.A.M. and Straathof, A.J.J. (2009) Adsorption Equilibria of Bio-Based Butanol Solutions Using Zeolite. Biochemical Engineering Journal, 48, 99-103. http://dx.doi.org/10.1016/j.bej.2009.08.014
|
[16]
|
Yang, X., Tsai, G.J. and Tsao, G.T. (1994) Enhancement of in Situ Adsorption on the Acetone-Butanol Fermentation by Clostridium acetobutylicum. Separations Technology, 4, 81-92. http://dx.doi.org/10.1016/0956-9618(94)80009-X
|
[17]
|
Buday, Z., Linden, J.C. and Karim, M.N. (1990) Improved Acetone-Butanol-Ethanol Fermentation Analysis Using Subambient HPLC Column Temperature. Enzyme and Microbial Technology, 12, 24-27. http://dx.doi.org/10.1016/0141-0229(90)90175-P
|
[18]
|
Wang, S., Zhang, Y., Dond, H., Mao, S., Zhu, Y., Wang, R., Luan, G. and Li, Y. (2011) Formic Acid Triggers the “Acid Crash” of Avetone-Butanol-Ethanol Fermentation by Clostridium aceto-butylicum. Applied and Environmental Microbiology, 77, 1674-1680. http://dx.doi.org/10.1128/AEM.01835-10
|
[19]
|
Finch, A.S., Mackie, T.D., Sund, C.J. and Sumner, J.J. (2011) Metabolite Analysis of Clostridium acetobutylicum: Fermentation in a Microbial Fuel Cell. Bioresource Technology, 102, 312-315. http://dx.doi.org/10.1016/j.biortech.2010.06.149
|
[20]
|
Cho, D.H., Shin, S.J. and Kim, Y.H. (2012) Effects of Acetic Acid and Formic Acid on ABE Production by Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology and Bioprocess Engineering, 17, 270-275. http://dx.doi.org/10.1007/s12257-011-0498-4
|
[21]
|
Kumar, M., Sainib, S. and Gayen, K. (2014) Acetone-Butanol-Ethanol Fermentation Analysis Using Only High Performance Liquid Chromatography. Analytical Methods, 6, 774-781. http://dx.doi.org/10.1039/c3ay41717d
|
[22]
|
Matsumura, M., Takehara, S., and Kataoka, H. (1992) Continuous Butanol/Isopropanol Fermentation in Down-Flow Column Reactor Coupled with Pervaporation Using Supported Liquid Membrane. Biotechnology and Bioengineering, 39, 148-156.
|
[23]
|
Setlhaku, M., Brunberg, S., Villa, E.A.V. and Wichmann, R. (2012) Improvement in the Bioreactor Specific Productivity by Coupling Continuous Reactor with Repeated Fed-Batch Reactor for Acetone-Butanol-Ethanol Production. Journal of Biotechnology, 161, 147-152. http://dx.doi.org/10.1016/j.jbiotec.2012.04.004
|
[24]
|
Setlhaku, M., Heitmann, S., Górak, A. and Wichmann, R. (2013) Investigation of Gas Stripping and Pervaporation for Improved Feasibility of Two-Stage Butanol Production Process. Bioresource Technology, 136, 102-108. http://dx.doi.org/10.1016/j.biortech.2013.02.046
|
[25]
|
Aranda-González, I., Moguel-Ordonez, Y. and Betancur-Ancona, D. (2014) Rapid HPLC Method for Determination of Rebaudioside D in Leaves of Stevia rebaudiana Bertoni Grown in the Southeast of México. American Journal of Analytical Chemistry, 5, 813-819. http://dx.doi.org/10.4236/ajac.2014.513090
|
[26]
|
Zhao, L., Liu, L. and Li, L. (2014) Qualitative and Quantitative Analysis of Five Bioactive Flavonoids in Salix bordensis Turcz. by HPLC-DAD and HPLC-ESI-MS. American Journal of Analytical Chemistry, 5, 851-860. http://dx.doi.org/10.4236/ajac.2014.513094
|