[1]
|
1. Mandelbrot, B. (1963) The Variation of Certain Speculative Prices. Journal of Business, 36, 394-419. http://dx.doi.org/10.1086/294632
|
[2]
|
Mandelbrot, B. (1965) Very Long-Tailed Probability Distributions and the Empirical Distribution of City Sizes. In: Massarik, F. and Ratoosh, P., Eds., Mathematical Explanations in Behavioral Science, Homewood Editions, New York, 322-332.
|
[3]
|
Fama, E. (1965) Portfolio Analysis in a Stable Paretian Market. Management Science, Series A, 11, 404-419.
|
[4]
|
Samuelson, P. (1967) Efficient Portfolio Selection for Pareto-Lévy Investments. Journal of Financial and Quantitative Analysis, 2, 107-122. http://dx.doi.org/10.2307/2329897
|
[5]
|
Tankov, P. (2011) Pricing and Hedging in Exponential Levy Models: Review of Recent Results. http://www.proba.jussieu.fr/pageperso/tankov/
|
[6]
|
Fama, E. and Roll, R. (1971) Parameter Estimates for Symmetric Stable Distributions. Journal of the American Statistical Association, 66, 331-338. http://dx.doi.org/10.1080/01621459.1971.10482264
|
[7]
|
Jovanovic, F. and Schinckus, C. (2013) The History of Econophysics as a New Approach in Modern Financial Theory. History of Political Economy, 45, 443-474. http://dx.doi.org/10.1215/00182702-2334758
|
[8]
|
Mantegna, R. and Stanley, E. (1994) Stochastic Process with Ultra-Slow Convergence to a Gaussian: The Truncated Lévy Flight. Physical Review Letters, 73, 2946-2949. http://dx.doi.org/10.1103/PhysRevLett.73.2946
|
[9]
|
Mandelbrot, B., Fisher, A. and Calvet, L. (1997) A Multifractal Model of Asset Returns. Cowles Foundation for Research and Economics.
|
[10]
|
Hurst, S.R., Platen, E. and Rachev, S.T. (1999) Option Pricing for a Logstable Asset Price Model. Mathematical and Computer Modeling, 29, 105-119. http://dx.doi.org/10.1016/S0895-7177(99)00096-5
|
[11]
|
Geman, H., Madan, D. and Yor, M. (2001) Stochastic Volatility, Jump and Hidden Time Changes. Finance Stochastics, 6, 63-90. http://dx.doi.org/10.1007/s780-002-8401-3
|
[12]
|
Carr, P. and Wu, M. (2004) Time-Changed Lévy Processes and Option Pricing. Journal of Financial Economics, 17, 113-141.
|
[13]
|
Carr, P. and Wu, M. (2004) What Type of Process Underlies Options: A Simple Robust Test. Journal of Finance, 68, 2581-2610.
|
[14]
|
McCulloch, H. (1986) Simple Consistent Estimators of Stable Distribution Parameters. Communications in Statistics—Simulation and Computation, 15, 1109-1136. http://dx.doi.org/10.1080/03610918608812563
|
[15]
|
Borland, L. (2002) A Theory of Non-Gaussian Option Pricing. Quantitative Finance, 2, 415-431.
|
[16]
|
Cartea, A. and Howison, S. (2009) Option Pricing with Levy-Stable Processes Generated by Levy-Stable Integrated Variance. Quantitative Finance, 9, 397-409. http://dx.doi.org/10.1080/14697680902748506
|
[17]
|
Schinckus, C. (2013) How Physicists Made Stable Lévy Processes Physically Plausible. Brazilian Journal of Physics, 43, 281-293. http://dx.doi.org/10.1007/s13538-013-0142-1
|
[18]
|
Matacz, A. (2000) Financial Modelling and Option Theory with the Truncated Lévy Process. International Journal of Theoretical and Applied Finance, 3, 142-160. http://dx.doi.org/10.1142/S0219024900000073
|
[19]
|
Boyarchenko, S.I. and Levendorskii, S.Z. (2000) Option Pricing for Truncated Levy Processes. International Journal of Theoretical and Applied Finance, 3, 549-552. http://dx.doi.org/10.1142/S0219024900000541
|
[20]
|
Boyarchenko, S.I. and Levendorskii, S.Z. (2002) Barrier Options and Touch-and-Out Options under Regular Levy Processes of Exponential Type. Annals of Applied Probability, 12, 1261-1298. http://dx.doi.org/10.1214/aoap/1037125863
|
[21]
|
McCauley, J., Gunaratne, G. and Bassler, K. (2007) Martingale Option Pricing. Physica A, 380, 351-356.http://dx.doi.org/10.1016/j.physa.2007.02.038
|
[22]
|
Harrison, J.M and Kreps, D.M. (1979) Martingales and Arbitrage in Multiperiod Securities Markets. Journal of Economic Theory, 20, 381-404. http://dx.doi.org/10.1016/0022-0531(79)90043-7
|
[23]
|
Harrison, J.M. and Pliska, S.R. (1981) Martingales and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and Their Applications, 11, 215-260. http://dx.doi.org/10.1016/0304-4149(81)90026-0
|
[24]
|
Carr, P. and Madan, D.B. (2005) A Note on Sufficient Conditions for No Arbitrage. Finance Research Letters, 2, 125-130. http://dx.doi.org/10.1016/j.frl.2005.04.005
|
[25]
|
Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654. http://dx.doi.org/10.1086/260062
|
[26]
|
Bouchaud, J.P. and Sornette, D. (1994) The Black-Scholes Option Pricing Problem in Mathematical Finance: Generalisation and Extension to a Large Class of Stochastic Processes. Journal de Physique I, 4, 863-881.http://dx.doi.org/10.1051/jp1:1994233
|
[27]
|
Aurell, E., Bouchaud, J.-P., Potters, M. and Zyczkowski, K. (1997) Option Pricing and Hedging beyond Black and Scholes. Journal de Physique IV, 3, 2-11.
|
[28]
|
Tan, A. (2005) Long Memory Stochastic Volatility and a Risk Minimization Approach for Derivative Pricing an Hedging. Ph.D. Thesis, School of Mathematics, University of Manchester, Manchester.
|
[29]
|
Bucsa, G., Jovanovic, F. and Schinckus, C. (2011) A Unified Model for Price Return Distributions Used in Econophysics. Physica A, 390, 3435-3443. http://dx.doi.org/10.1016/j.physa.2011.04.012
|
[30]
|
Shlesinger, M. (1995) Comment on “Stochastic Process with Ultraslow Convergence to a Gaussian: The Truncated Lévy Flight. Physical Review Letters, 74, 4959. http://dx.doi.org/10.1103/PhysRevLett.74.4959
|
[31]
|
Carr, P., Geman, H., Madan, D.B. and Yor, M. (2002) The Fine Structure of Asset Returns: An Empirical Investigation. Journal of Business, 75, 305-332. http://dx.doi.org/10.1086/338705
|
[32]
|
Koponen, I. (1995) Analytic Approach to the Problem of Convergence of Truncated Lévy Flights toward the Gaussian Stochastic Process. Physical Review E, 52, 1197-1199. http://dx.doi.org/10.1103/PhysRevE.52.1197
|