The Optimal Hedge Ratio in Option Pricing: The Case of Exponentially Truncated Lévy Stable Distribution

Abstract

In financial option pricing, the stable Lévy framework is a problematic issue because of its (theoretical) infinite invariance. This paper deals with the integration of these processes into option pricing by defining the minimal theoretical condition required for an optimal risk hedging based on a stable Lévy framework with an exponentially truncated distribution.

Share and Cite:

Busca, G. , Haven, E. , Jovanovic, F. and Schinckus, C. (2014) The Optimal Hedge Ratio in Option Pricing: The Case of Exponentially Truncated Lévy Stable Distribution. Theoretical Economics Letters, 4, 760-766. doi: 10.4236/tel.2014.49096.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] 1. Mandelbrot, B. (1963) The Variation of Certain Speculative Prices. Journal of Business, 36, 394-419. http://dx.doi.org/10.1086/294632
[2] Mandelbrot, B. (1965) Very Long-Tailed Probability Distributions and the Empirical Distribution of City Sizes. In: Massarik, F. and Ratoosh, P., Eds., Mathematical Explanations in Behavioral Science, Homewood Editions, New York, 322-332.
[3] Fama, E. (1965) Portfolio Analysis in a Stable Paretian Market. Management Science, Series A, 11, 404-419.
[4] Samuelson, P. (1967) Efficient Portfolio Selection for Pareto-Lévy Investments. Journal of Financial and Quantitative Analysis, 2, 107-122. http://dx.doi.org/10.2307/2329897
[5] Tankov, P. (2011) Pricing and Hedging in Exponential Levy Models: Review of Recent Results.
http://www.proba.jussieu.fr/pageperso/tankov/
[6] Fama, E. and Roll, R. (1971) Parameter Estimates for Symmetric Stable Distributions. Journal of the American Statistical Association, 66, 331-338. http://dx.doi.org/10.1080/01621459.1971.10482264
[7] Jovanovic, F. and Schinckus, C. (2013) The History of Econophysics as a New Approach in Modern Financial Theory. History of Political Economy, 45, 443-474.
http://dx.doi.org/10.1215/00182702-2334758
[8] Mantegna, R. and Stanley, E. (1994) Stochastic Process with Ultra-Slow Convergence to a Gaussian: The Truncated Lévy Flight. Physical Review Letters, 73, 2946-2949.
http://dx.doi.org/10.1103/PhysRevLett.73.2946
[9] Mandelbrot, B., Fisher, A. and Calvet, L. (1997) A Multifractal Model of Asset Returns. Cowles Foundation for Research and Economics.
[10] Hurst, S.R., Platen, E. and Rachev, S.T. (1999) Option Pricing for a Logstable Asset Price Model. Mathematical and Computer Modeling, 29, 105-119.
http://dx.doi.org/10.1016/S0895-7177(99)00096-5
[11] Geman, H., Madan, D. and Yor, M. (2001) Stochastic Volatility, Jump and Hidden Time Changes. Finance Stochastics, 6, 63-90. http://dx.doi.org/10.1007/s780-002-8401-3
[12] Carr, P. and Wu, M. (2004) Time-Changed Lévy Processes and Option Pricing. Journal of Financial Economics, 17, 113-141.
[13] Carr, P. and Wu, M. (2004) What Type of Process Underlies Options: A Simple Robust Test. Journal of Finance, 68, 2581-2610.
[14] McCulloch, H. (1986) Simple Consistent Estimators of Stable Distribution Parameters. Communications in Statistics—Simulation and Computation, 15, 1109-1136.
http://dx.doi.org/10.1080/03610918608812563
[15] Borland, L. (2002) A Theory of Non-Gaussian Option Pricing. Quantitative Finance, 2, 415-431.
[16] Cartea, A. and Howison, S. (2009) Option Pricing with Levy-Stable Processes Generated by Levy-Stable Integrated Variance. Quantitative Finance, 9, 397-409.
http://dx.doi.org/10.1080/14697680902748506
[17] Schinckus, C. (2013) How Physicists Made Stable Lévy Processes Physically Plausible. Brazilian Journal of Physics, 43, 281-293. http://dx.doi.org/10.1007/s13538-013-0142-1
[18] Matacz, A. (2000) Financial Modelling and Option Theory with the Truncated Lévy Process. International Journal of Theoretical and Applied Finance, 3, 142-160.
http://dx.doi.org/10.1142/S0219024900000073
[19] Boyarchenko, S.I. and Levendorskii, S.Z. (2000) Option Pricing for Truncated Levy Processes. International Journal of Theoretical and Applied Finance, 3, 549-552.
http://dx.doi.org/10.1142/S0219024900000541
[20] Boyarchenko, S.I. and Levendorskii, S.Z. (2002) Barrier Options and Touch-and-Out Options under Regular Levy Processes of Exponential Type. Annals of Applied Probability, 12, 1261-1298.
http://dx.doi.org/10.1214/aoap/1037125863
[21] McCauley, J., Gunaratne, G. and Bassler, K. (2007) Martingale Option Pricing. Physica A, 380, 351-356.http://dx.doi.org/10.1016/j.physa.2007.02.038
[22] Harrison, J.M and Kreps, D.M. (1979) Martingales and Arbitrage in Multiperiod Securities Markets. Journal of Economic Theory, 20, 381-404. http://dx.doi.org/10.1016/0022-0531(79)90043-7
[23] Harrison, J.M. and Pliska, S.R. (1981) Martingales and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and Their Applications, 11, 215-260.
http://dx.doi.org/10.1016/0304-4149(81)90026-0
[24] Carr, P. and Madan, D.B. (2005) A Note on Sufficient Conditions for No Arbitrage. Finance Research Letters, 2, 125-130. http://dx.doi.org/10.1016/j.frl.2005.04.005
[25] Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654. http://dx.doi.org/10.1086/260062
[26] Bouchaud, J.P. and Sornette, D. (1994) The Black-Scholes Option Pricing Problem in Mathematical Finance: Generalisation and Extension to a Large Class of Stochastic Processes. Journal de Physique I, 4, 863-881.http://dx.doi.org/10.1051/jp1:1994233
[27] Aurell, E., Bouchaud, J.-P., Potters, M. and Zyczkowski, K. (1997) Option Pricing and Hedging beyond Black and Scholes. Journal de Physique IV, 3, 2-11.
[28] Tan, A. (2005) Long Memory Stochastic Volatility and a Risk Minimization Approach for Derivative Pricing an Hedging. Ph.D. Thesis, School of Mathematics, University of Manchester, Manchester.
[29] Bucsa, G., Jovanovic, F. and Schinckus, C. (2011) A Unified Model for Price Return Distributions Used in Econophysics. Physica A, 390, 3435-3443. http://dx.doi.org/10.1016/j.physa.2011.04.012
[30] Shlesinger, M. (1995) Comment on “Stochastic Process with Ultraslow Convergence to a Gaussian: The Truncated Lévy Flight. Physical Review Letters, 74, 4959.
http://dx.doi.org/10.1103/PhysRevLett.74.4959
[31] Carr, P., Geman, H., Madan, D.B. and Yor, M. (2002) The Fine Structure of Asset Returns: An Empirical Investigation. Journal of Business, 75, 305-332. http://dx.doi.org/10.1086/338705
[32] Koponen, I. (1995) Analytic Approach to the Problem of Convergence of Truncated Lévy Flights toward the Gaussian Stochastic Process. Physical Review E, 52, 1197-1199.
http://dx.doi.org/10.1103/PhysRevE.52.1197

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.