[1]
|
Kowalski, A.M., Plastino, A. and Proto, A.N. (1995) Semiclassical Model for Quantum Dissipation. Physical Review E, 52, 165-177. http://dx.doi.org/10.1103/PhysRevE.52.165
|
[2]
|
Kowalski, A.M., Martin, M.T., Nuñez, J., Plastino, A. and Proto, A.N. (1988) Quantitative Indicator for Semiquantum Chaos. Physical Review A, 58, 2596-2599. http://dx.doi.org/10.1103/PhysRevA.58.2596
|
[3]
|
Sarris, C.M. and Proto, A.N. (2009) Information Entropy and Nonlinear Semiquantum Dynamics. International Journal of Bifurcation and Chaos, 19, 3473-3484.
|
[4]
|
Alhassid, Y. and Levine, R.D. (1977) Entropy and Chemical Change. III. The Maximal Entropy (Subject to Constraints) Procedure as a Dynamical Theory. The Journal of Chemical Physics, 67, 4321-4339.
http://dx.doi.org/10.1063/1.434578
|
[5]
|
Kowalski, A.M., Plastino, A. and Proto, A.N. (2002) Classical Limits. Physics Letters A, 297, 162-172.
http://dx.doi.org/10.1016/S0375-9601(02)00034-8
|
[6]
|
Kowalski, A.M., Martin, M.T., Nuñez, J., Plastino, A. and Proto, A.N. (2000) Semiquantum Chaos and the Uncertainty Principle. Physica A: Statistical Mechanics and Its Applications, 276, 95-108.
http://dx.doi.org/10.1016/S0378-4371(99)00280-0
|
[7]
|
Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
|
[8]
|
Fano, U. (1957) Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Reviews of Modern Physics, 29, 74-93. http://dx.doi.org/10.1103/RevModPhys.29.74
|
[9]
|
Jaynes, E.T. (1957) Information Theory and Statistical Mechanics. Physical Review, 106, 620-630.
http://dx.doi.org/10.1103/PhysRev.106.620
|
[10]
|
Jaynes, E.T. (1957) Information Theory and Statistical Mechanics II. Physical Review, 108, 171-190.
http://dx.doi.org/10.1103/PhysRev.108.171
|
[11]
|
Otero, D., Plastino, A., Proto, A.N. and Zannoli, G. (1982) Ehrenfest Theorem and Information Theory. Physical Review A, 26, 1209-1217. http://dx.doi.org/10.1103/PhysRevA.26.1209
|
[12]
|
Ballentine, L.E. (2001) Is Semiquantum Chaos Real? Physical Review E, 63, Article ID: 056204.
http://dx.doi.org/10.1103/PhysRevE.63.056204
|
[13]
|
Blum, T.C. and Elze, H.T. (1996) Semiquantum Chaos in the Double Well. Physical Review E, 53, 3123-3133.
http://dx.doi.org/10.1103/PhysRevE.53.3123
|
[14]
|
Bonilla, L.L. and Guinea, F. (1992) Collapse of the Wave Packet and Chaos in a Model with Classical and Quantum Degrees of Freedom. Physical Review A, 45, 7718-7728. http://dx.doi.org/10.1103/PhysRevA.45.7718
|
[15]
|
Cukier, R.I. and Morillo, M. (2000) Comparison between Quantum and Approximate Semiclassical Dynamics of an Externally Driven Spin-Harmonic Oscillator System. Physical Review A, 61, Article ID: 024103.
http://dx.doi.org/10.1103/PhysRevA.61.024103
|
[16]
|
Pattayanak, A.K. and Schieve, W.C. (1994) Semiquantal Dynamics of Fluctuations: Ostensible Quantum Chaos. Physical Review Letters, 72, 2855-2858. http://dx.doi.org/10.1103/PhysRevLett.72.2855
|
[17]
|
Kowalski, A.M., Martin, M.T., Plastino, A., Proto, A.N. and Rosso, O.A. (2003) Wavelet Statistical Complexity Analysis of the Classical Limit. Physical Review A, 311, 189-191. http://dx.doi.org/10.1016/S0375-9601(03)00470-5
|
[18]
|
Cooper, F., Dawson, J.F., Meredith, D. and Shepard, H. (1994) Semiquantum Chaos. Physics Letters, 72, 1337-1340.
http://dx.doi.org/10.1016/S0375-9601(03)00470-5
|
[19]
|
Kowalski, A.M., Plastino, A. and Proto, A.N. (2003) Classical Limit and Chaotic Regime in a Semi-Quantum Hamiltonian. International Journal of Bifurcation and Chaos, 13, 2315-2325. http://dx.doi.org/10.1142/S0218127403007977
|
[20]
|
Porter, M.A. (2001) Nonadiabatic Dynamics in Semiquantal Physics. Reports on Progress in Physics, 64, 1165-1189.
http://dx.doi.org/10.1088/0034-4885/64/9/203
|
[21]
|
Kowalski, A.M., Plastino, A. and Proto, A.N. (1997) A Semiclassical Model for Quantum Dissipation. Physica A: Statistical Mechanics and Its Applications, 236, 429-447. http://dx.doi.org/10.1016/S0378-4371(96)00379-2
|
[22]
|
Porter, A.M. and Liboff, R.L. (2001) Vibrating Quantum Billiards on Riemannian Manifolds. International Journal of Bifurcation and Chaos, 11, 2305-2315.
|
[23]
|
Plastino, A. and Sarris, C. (2014) Information Theory and Semi-Quantum MaxEnt: Semiquantum Physics. LAP Lambert Academic Press, Saarbrücken.
|
[24]
|
Blumel, R. and Esser, B. (1994) Quantum Chaos in the Born-Oppenheimer Approximation. Physical Review Letters, 72, 3658-3661. http://dx.doi.org/10.1103/PhysRevLett.72.3658
|
[25]
|
Schanz, H. and Esser, B. (1997) Mixed Quantum-Classical versus Full Quantum Dynamics: Coupled Quasiparticle-Oscillator System. Physical Review A, 55, 3375-3387. http://dx.doi.org/10.1103/PhysRevA.55.3375
|
[26]
|
Ma, J. and Yuan, R.K. (1997) Semiquantum Chaos. Journal of the Physical Society of Japan, 66, 2302-2307.
http://dx.doi.org/10.1143/JPSJ.66.2302
|
[27]
|
Sarris, C.M., Plastino, A. and Sassano, M.P. (2014) Peculiar Dynamics of Phase Space Embedded SU(2) Hamiltonians. International Journal of Sciences, 3, 32-44. http://www.ijsciences.com/pub/article/379
|
[28]
|
Cohen-Tannouudji, C., Diu, B. and Laloë, F. (1977) Quantum Mechanics. Wiley, New York.
|
[29]
|
Aliaga, J., Otero, D., Plastino, A. and Proto, A.N. (1987) Constants of Motion, Accessible States and Information Theory. Physical Review A, 35, 2304-2311. http://dx.doi.org/10.1103/PhysRevA.35.2304
|
[30]
|
Merzbacher, E. (1963) Quantum Mechanics. Wiley, New York.
|
[31]
|
Düering, E., Otero, D., Plastino, A. and Proto, A.N. (1987) General Dynamical Invariants for Time-Dependent Hamiltonians. Physical Review A, 35, 2314-2320. http://dx.doi.org/10.1103/PhysRevA.35.2304
|
[32]
|
Sarris, C.M., Caram, F. and Proto, A.N. (2004) Entropy Invariants of Motion. Physica A: Statistical Mechanics and Its Applications, 331, 125-139. http://dx.doi.org/10.1016/j.physa.2003.07.008
|
[33]
|
Sarris, C.M., Caram, F. and Proto, A.N. (2004) The Uncertainty Principle as Invariant of Motion for Time-Dependent Hamiltonians. Physics Letters A, 324, 1-8. http://dx.doi.org/10.1016/j.physleta.2004.02.036
|
[34]
|
Sarris, C.M. and Proto, A.N. (2005) Time-Dependent Invariants of Motion for Complete Sets of Non-Commuting Observables. Physica A: Statistical Mechanics and Its Applications, 348, 97-109.
http://dx.doi.org/10.1016/j.physa.2004.09.038
|
[35]
|
Sarris, C.M. and Proto, A.N. (2007) Generalized Metric Phase Space for Quantum Systems and the Uncertainty Principle. Physica A: Statistical Mechanics and Its Applications, 377, 33-42. http://dx.doi.org/10.1016/j.physa.2006.10.093
|
[36]
|
Tung, W.K. (1985) Group Theory in Physics. World Scientific Publishing, Singapore. http://dx.doi.org/10.1142/0097
|
[37]
|
Sarris, C.M., Plastino, A. and Proto, A.N. (2013) Difficulties in Evaluating Lyapunov Exponents for Lie Governed Dynamics. Journal of Chaos, 2013, Article ID: 587548, 7 p. http://dx.doi.org/10.1155/2013/587548
|
[38]
|
Louisell, W. (1973) Quantum Statistical Properties of Radiation. Wiley, New York.
|
[39]
|
Cooper, F., Dawson, J., Habib, S. and Ryne, R.D. (1998) Chaos in Time-Dependent Variational Approximation to Quantum. Physical Review E, 57, 1489-1498. http://dx.doi.org/10.1103/PhysRevE.57.1489
|
[40]
|
Cooper, F., Habib, S., Kluger, Y. and Mottola, E. (1997) Nonequilibrium Dynamics of Symmetry Breaking in λΦ? Theory. Physical Review D, 55, 6471-6503. http://dx.doi.org/10.1103/PhysRevD.55.6471
|
[41]
|
Aliaga, J., Crespo, G. and Proto, A.N. (1990) Thermodynamics of Squeezed States for the Kanai-Caldirola Hamiltonian. Physical Review A, 42, 4325-4335. http://dx.doi.org/10.1103/PhysRevD.55.6471
|
[42]
|
Aliaga, J., Crespo, G. and Proto, A.N. (1990) Non-Zero Temperature Coherent and Squeezed States for the Harmonic-Oscillator: The Time-Dependent Frequency Case. Physical Review A, 42, 618-626.
http://dx.doi.org/10.1103/PhysRevA.42.618
|
[43]
|
Hirayama, M. (1991) SO(2,1) Structure of the Generalized Harmonic Oscillator. Progress of Theoretical Physics, 86, 343-354. http://dx.doi.org/10.1143/ptp/86.2.343
|
[44]
|
Cerveró, J.M. and Lejarreta, J.D. (1989) SO(2,1) Invariant Systems and the Berry Phase. Journal of Physics A: Mathematical and General, 22, L633-L666. http://dx.doi.org/10.1088/0305-4470/22/14/001
|
[45]
|
Aliaga, J., Otero, D., Plastino, A. and Proto, A.N. (1988) Quantum Thermodynamics and Information Theory. Physical Review A, 38, 918-929. http://dx.doi.org/10.1103/PhysRevA.38.918
|
[46]
|
Dattoli, G., Dipace, A. and Torre, A. (1986) Dynamics of the SU(1,1) Bloch Vector. Physical Review A, 33, 4387-4389.
http://dx.doi.org/10.1103/PhysRevA.33.4387
|