Molecular dynamics simulations exploring the interaction between DNA and metalated bleomycin

DOI: 10.4236/jbpc.2011.22021   PDF   HTML     5,148 Downloads   9,690 Views   Citations


Bleomycin (Blm) is a natural antibiotic with antitumour activity, used as a combination drug in treatment of various types of cancers. Blm intercalates with DNA and will in the presence of a redox metal ion and molecular oxygen form an activated bleomycin complex capable of releasing free radicals and subsequently leading to DNA cleavage. The present theoretical work was carried out to better understand the interaction between DNA and Blm using different metal co-factors (Co and Fe). Binding energies and structural properties were analysed for both the complexes. The results show that Blm binds stronger to DNA when complexed with Fe, and provides a better structural orientation compared to the CoBlm complex in order to abstract the H4' hydrogen of deoxyribose that initiates the DNA strand cleavage process. The short distance between the iron-bound peroxide and the deoxyribose H4' furthermore supports the previously proposed direct abstraction mechanism.

Share and Cite:

Palwai, V. and Eriksson, L. (2011) Molecular dynamics simulations exploring the interaction between DNA and metalated bleomycin. Journal of Biophysical Chemistry, 2, 171-183. doi: 10.4236/jbpc.2011.22021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Cragg, G.M., Newman, D.J., Snader, K.M. (1997) Natural products in drug discovery and development. J. Nat. Prod. 60, 52-60. doi:10.1021/np9604893
[2] Kopka, M.L., Yoon, C., Goodsell, D., Pjura, P., Dickerson, R.E. (1985) The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. U.S.A. 82, 1376-1380. doi:10.1073/pnas.82.5.1376
[3] Tse, W.C., Boger, D.L. (2004) Sequence-selective DNA recognition: natural products and nature's lessons. Chem. Biol. 11, 1607-1617. doi:10.1016/j.chembiol.2003.08.012
[4] Wang, A.H., Ughetto, G., Quigley, G.J., Rich, A. (1987) Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-? resolution. Biochemistry 26, 1152-1163. doi:10.1021/bi00378a025
[5] Umezawa, H., Maeda, K., Takeuchi, T., Okami, Y. (1966) New antibiotics, bleomycin A and B. J. Antibiot. (Tokyo) 19, 200-209.
[6] Blum, R.H., Carter, S.K., Agre, K. (1973) A clinical review of bleomycin--a new antineoplastic agent. Cancer 31, 903-914. doi:10.1002/1097-0142(197304)31:4<903::AID-CNCR2820310422>3.0.CO;2-N
[7] Umezawa, H. (1974) Chemistry and mechanism of action of bleomycin. Fed. Proc. 33, 2296-2302.
[8] Stubbe, J.A., Kozarich, J.W., Wu, W., Vanderwall, D.E. (1996) Bleomycins: A structural model for specificity, binding, and double strand cleavage. Acc. Chem. Res. 29, 322-330. doi:10.1021/ar9501333
[9] Boger, D.L., Ramsey, T.M., Cai, H., Hoehn, S.T., Stubbe, J.A. (1998) A systematic evaluation of the bleomycin A(2) L-threonine side chain: Its role in preorganization of a compact conformation implicated in sequence-selective DNA cleavage. J. Am. Chem. Soc. 120, 9139-9148. doi:10.1021/ja9816638
[10] Tanaka, W. (1977) Development of new bleomycins with potential clinical utility. Jpn. J. Antibiot. 30, Suppl. 41-8.
[11] Boger, D.L., Cai, H. (1999) Bleomycin: Synthetic and mechanistic studies. Angew. Chem. - Intl. Ed. 38, 448-476. doi:10.1002/(SICI)1521-3773(19990215)38:4<448::AID-ANIE448>3.0.CO;2-W
[12] Hecht, S.M. (2000) Bleomycin: new perspectives on the mechanism of action. J. Nat. Prod. 63, 158-168. doi:10.1021/np990549f
[13] Stubbe, J.A., Kozarich, J.W. (1987) Mechanisms of bleomycin-induced DNA-degradation. Chem. Rev. 87, 1107-1136. doi:10.1021/cr00081a011
[14] Burger, R.M., Peisach, J., Horwitz, S.B. (1982) Effects of O2 on the reactions of activated bleomycin. J. Biol. Chem. 257, 3372-3375.
[15] Breen, A.P., Murphy, J.A. (1995) Reactions of oxyl radicals with DNA. Free Rad. Biol. Med. 18, 1033-1077. doi:10.1016/0891-5849(94)00209-3
[16] Wu, W., et al (2002) Solution structure of the hydroperoxide of Co(III) phleomycin complexed with d(CCAGGCCTGG)2: evidence for binding by partial intercalation. Nucleic Acids Res. 30, 4881-4891. doi:10.1093/nar/gkf608
[17] Zhao, C., et al (2002) Structures of HO(2)-Co(III)bleomycin A(2) bound to d(GAGCTC)(2) and d(GGAAGCTTCC)(2): structure-reactivity relationships of Co and Fe bleomycins. J. Inorg. Biochem. 91 259-268. doi:10.1016/S0162-0134(02)00420-8
[18] Papakyriakou, A., Mouzopoulou, B., Katsaros, N. (2003) The solution structure of the Ga(III)-bleomycin A2 complex resolved by NMR and molecular modeling; interaction with d(CCAGGCCTGG). J. Biol. Inorg. Chem. 8, 549-459.
[19] Lehmann, T.E., Ming, L.J., Rosen, M.E., Que, Jr, L. (1997) NMR studies of the paramagnetic complex Fe(II)-bleomycin. Biochemistry 36, 2807-2816. doi:10.1021/bi962748t
[20] Lin, P.S., Kwock, L., Hefter, K., Misslbeck, G. (1983) Effects of iron, copper, cobalt, and their chelators on the cytotoxicity of bleomycin. Cancer Res. 43, 1049-1053.
[21] Rao, E.A., Saryan, L.A., Antholine, W.E., Petering, D.H. (1980) Cytotoxic and antitumor properties of bleomycin and several of its metal complexes. J. Med. Chem. 23, 1310-1318. doi:10.1021/jm00186a006
[22] Decker, A., Chow, M.S., Kemsley, J.N., Lehnert, N., Solomon, E.I. (2006) Direct hydrogen-atom abstraction by activated bleomycin: an experimental and computational study. J. Am. Chem. Soc. 128, 4719-4733. doi:10.1021/ja057378n
[23] Kumar, D., Hirao, H., Shaik, S., Kozlowski, P.M. (2006) Proton-shuffle mechanism of O-O activation for formation of a high-valent oxo-iron species of bleomycin. J. Am. Chem. Soc. 128, 16148-16158. doi:10.1021/ja064611o
[24] Chow, M.S:, Liu, L.V., Solomon, E.I. (2008) Further insights into the mechanism of the reaction of activated bleomycin with DNA. Proc. Natl. Acad. Sci. U.S.A. 105, 13241-132415. doi:10.1073/pnas.0806378105
[25] Karawajczyk, A., Buda, F. (2005) The metal bonding domain of the antitumor drug Fe(II)-bleomycin: A DFT investigation. J. Biol. Inorg. Chem. 10, 33-40. doi:10.1007/s00775-004-0610-8
[26] Krieger, E., Darden, T., Nabuurs, S.B., Finkelstein, A., Vriend, G. (2004) Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins - Struct. Func. Bioinf. 57, 678-683.
[27] Zhao, C., et al (2002) Structures of HO2-Co(III)bleomycin A2 bound to d(GAGCTC)2 and d(GGAAGCTTCC)2: structure-reactivity relationships of Co and Fe bleomycins. J. Inorg. Biochem. 91, 259-268. doi:10.1016/S0162-0134(02)00420-8
[28] Duan, Y., et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem. 24, 1999-2012. doi:10.1002/jcc.10349
[29] Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G. (1995) A smooth particle mesh ewald method. J. Chem. Phys. 103, 8577-8593. doi:10.1063/1.470117
[30] WL Jorgensen, W.L. (1981) Quantum And Statistical Mechanical Studies Of Liquids .10. Transferable Intermolecular Potential Functions For Water, Alcohols, And Ethers - Application To Liquid Water. J. Am. Chem. Soc. 103, 335-340. doi:10.1021/ja00392a016

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.