[1]
|
Al-Shdeifat, S.M. and Al-Bdoor, H.A. (2009) Annual Report. National Center for Scientific Research and Agricultural Extension, Jordan.
|
[2]
|
Abu-Qudais, M. and Okasha, G. (1996) Diesel Fuel and Olive-Cake Slurry: Atomization and Combustion Performance. Applied Energy, 54, 315-326. http://dx.doi.org/10.1016/0306-2619(95)00077-1
|
[3]
|
Al-Widyan, M.I., Tashtoush, G. and Khadair, A.I. (2002) Briquettes of Olive Cake as a Potential Source of Thermal Energy. Journal of Solid Waste Technology and Management, 28, 51-59.
|
[4]
|
Jumah, R., Al-Kteimat, E., Al-Hamad, A. and Telfah, E. (2007) Constant and Intermittent Drying Characteristics of Olive Cake. Drying Technology, 25, 1421-1426. http://dx.doi.org/10.1080/07373930701536668
|
[5]
|
Aljundi, I.H. and Jarrah, N.A. (2008) A Study of Characteristics of Activated Carbon Produced from Jordanian Olive Cake. Journal of Analytical and Applied Pyrolysis, 81, 33-36. http://dx.doi.org/10.1016/j.jaap.2007.07.006
|
[6]
|
El-Sheikh, A.H., Sweileh, J.A. and Saleh, M.I. (2009) Partially Pyrolyzed Olive Pomace Sorbent of High Permeability for Pre-Concentration of Environmental Waters. Journal of Hazardous Materials, 169, 58-64. http://dx.doi.org/10.1016/j.jhazmat.2009.03.061
|
[7]
|
Tawarah, K.M. and Rababah, R.A. (2013) Characteristics of Some Jordanian Crude and Exhausted Olive Pomace Samples. Green and Sustainable Chemistry, 3, 146-162. http://dx.doi.org/10.4236/gsc.2013.34018
|
[8]
|
Mata-Sánchez, J., Pérez-Jiménez, J.A., Díaz-Villanueva, M.J., Serrano, A., Núñez-Sánchez, N. and López-Giménez, F.J. (2014) Development of Olive Stone Quality System Based on Biofuel Energetic Parameters Study. Renewable Energy, 66, 251-256. http://dx.doi.org/10.1016/j.renene.2013.12.009
|
[9]
|
Garcia-Maraver, A., Terron, L.C., Zambrano, M. and Ramos-Ridao, A.F. (2013) Thermal Events during the Combustion of Agricultural and Forestry Lopping Residues. In: Mendez-Vilas, A., Ed., Materials and Processes for Energy: Communicating Current Research and Technological Developments, Formatex, 407-411.
|
[10]
|
Misra, M.K., Ragland, K.W. and Baker, A.J. (1993) Wood Ash Composition as a Function of Furnace Temperature. Biomass and Bioenergy, 4, 103-116. http://dx.doi.org/10.1016/0961-9534(93)90032-Y
|
[11]
|
ASTM Standard D3172 (2007) Standard Practice for Proximate Analysis of Coal and Coke. ASTM International.
|
[12]
|
Mayoral, M.C., Izquierdo, M.T., Andrés, J.M. and Rubio, B. (2001) Different Approaches to Proximate Analysis by Thermogravimetry Analysis. Thermochemica Acta, 370, 91-97.
http://dx.doi.org/10.1016/S0040-6031(00)00789-9
|
[13]
|
Cantrell, K.B., Martin II, J.H. and Kyoung, S.R. (2010) Application of Thermogravimetric Analysis for the Proximate Analysis of Livestock Wastes. Journal of ASTM International, 7, 1-13.
|
[14]
|
Parikha, J., Channiwalab, S.A. and Ghosal, J.K. (2005) A Correlation for Calculating HHV from Proximate Analysis of Solid Fuels. Fuel, 84, 487-494. http://dx.doi.org/10.1016/j.fuel.2004.10.010
|
[15]
|
Gaur, S. and Reed, T.B. (1998) Thermal Data for Natural and Synthetic Fuels. Marcel Dekker, New York, 259.
|
[16]
|
Varol, M. (2006) Combustion and Co-Combustion of Olive Cake and Coalina Fluidized Bed. Thesis, Middle East Technical University, Ankara.
|
[17]
|
Parr 587 M-6400 (2011) Oxygen Bomb Calorimeter Operating Instruction Manual. Chapter 7, Parr Instruments Company, Moline.
|
[18]
|
ASTM Standard D5865-11A (2011) Standard Test Method for Gross Calorific Value of Coal and Cock. ASTM International, Appendix XI.
|
[19]
|
Marsh, K.N. (1987) Recommended Reference Materials for the Realization of Physicochemical Properties. Blackwell, Oxford.
|
[20]
|
Meraz, L., Dominguez, A., Kornhauser, I. and Roja, F. (2003) A Thermochemical Concept-Based Equation to Estimate Waste Combustion Enthalpy from Elemental Composition. Fuel, 82, 1499-1507. http://dx.doi.org/10.1016/S0016-2361(03)00075-9
|
[21]
|
Brlek, T., Voca, N., Kricka, T., Levic, J., Vukmirovic, D. and Colovic, R. (2012) Quality of Pelleted Olive Cake for Energy Generation. Agriculturae Conspectus Scientificus, 77, 31-35.
|
[22]
|
Miranda, T., Esteban, A., Rojas, S., Montero, I. and Ruiz, A. (2008) Combustion Analysis of Different Olive Residues. International Journal of Molecular Science, 9, 512-525. http://dx.doi.org/10.3390/ijms9040512
|
[23]
|
Integra Fuels. Typical Specifications of Olive Cake. http://www.integra-fuels.com/olive-cake-pellets.html
|
[24]
|
Gravalos, I., Gialamas, T., Koutsofitis, Z., Kateris, D., Tsiropoulos, Z., Xyradakis, P. and Georgiades, A. (2008) Energetic Study on Animal Fats and Vegetable Oils Using Combustion Bomb Calorimeter. Journal of Agricultural Machinery Science, 4, 69-74.
|
[25]
|
NIST Chemistry Web Book, NIST Standard Reference Database Number 69. http://www.en.wikipedia.org/wiki/Heat_of_combustion
|
[26]
|
Heikkinen, J.M., Hordijk, J.C., de Jong, W. and Spliethoff, H. (2004) Thermogravimetry as a Tool to Classify Waste Components to Be Used for Energy Generation. Journal of Analytical and Applied Pyrolysis, 71, 883-900. http://dx.doi.org/10.1016/j.jaap.2003.12.001
|
[27]
|
Sørum, L., Grønli, M.G. and Hustad, J.E. (2001) Pyrolysis Characteristics and Kinetics of Municipal Solid Wastes. Fuel, 80, 1217-1227. http://dx.doi.org/10.1016/S0016-2361(00)00218-0
|
[28]
|
Wu, C.H., Chang, C.Y. and Lin, J.P. (1997) Pyrolysis Kinetics of Paper Mixtures in Municipal Solid Waste. Journal of Chemical Technology and Biotechnology, 68, 65-67. http://dx.doi.org/10.1002/(SICI)1097-4660(199701)68:1<65::AID-JCTB610>3.0.CO;2-T
|
[29]
|
Yang, H., Yan, R., Chin, T., Liang, D.T., Chen, H. and Zheng, C. (2004) Thermogravimetric Analysis-Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. Energy & Fuels, 18, 1814-1821. http://dx.doi.org/10.1021/ef030193m
|