P53 protein expression and cell viability in irradiated peripheral blood mononuclear cells as bioindicators of radiosensitivity

Abstract

Cellular radiosensitivity is directly correlated with the mechanism of DNA repair, in which p53 protein plays a major role. In this context, this study correlated cell death with p53 expression in lymphocytes irradiated in vitro with different doses of gammaradiation. For this, peripheral blood samples were collected from 10 healthy subjects. Each sample was divided in aliquots and, separately, irradiated with doses of 0,5; 2 and 4 Gy. After this, peripheral blood mononuclear cells (PBMCs) were isolated and cultivated during 72 hours in 5% CO2 at 37ºC without mitogen stimulation. The expression of p53 protein was evaluated by flow cytometry. In parallel, cell viability was determined by trypan blue staining. Statistical analysis was performed us-ing analysis of variance (ANOVA), differences were considered as statistically significant when p < 0.05. The results showed an increase of p53 expression with the absorbed dose, which was proportional to cell death, suggesting that p53 can be used as bioindicator of individual radiosensitivity.

Share and Cite:

Cavalcanti, M. , Silva, A. , Silva, R. and Amaral, A. (2011) P53 protein expression and cell viability in irradiated peripheral blood mononuclear cells as bioindicators of radiosensitivity. Journal of Biophysical Chemistry, 2, 63-67. doi: 10.4236/jbpc.2011.22009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Barnett, G.C., West, C.M.L., Dunning, A.M., Elliott, R.M., Coles, C.E., Pharoah, P.D.P. and Burnet, N.G. (2009) Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nature Reviews, 9, 134-142. doi:10.1038/nrc2587
[2] Popanda, O., Marquardta, J.U., Chang-Claude, J. and Schmezer, P. (2008) Genetic variation in normal tissue toxicity induced by ionizing radiation. Mutatation Research, 667, 58-69. doi:10.1016/j.mrfmmm.2008.10.014
[3] Borgmann, K., R?per, B., El-Awady, R.A., Brackrock, S., Bigalke, M., D?rk, T., Alberti, W., Dikomey, E. and Dahm-Daphi, J. (2002) Indicators of late normal tissue response after radiotherapy for head and neck cancer: Fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiotherapy Oncology, 64, 141-152. doi:10.1016/S0167-8140(02)00167-6
[4] Borgmann, K., Hoeller, U., Nowack, S., Bernhard, M., R?per, B., Brackrock, S., Petersen, C., Szymczak, S., Ziegler, A., Feyer, P., Albert, W. and Dikomey, E. (2008) Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. International Journal of Radiation Oncology Biology Physics, 71, 256-264. doi:10.1016/j.ijrobp.2008.01.007
[5] Turesson, I., Nyman, J., Holmberg, E. and Oden, A. (1996) Prognostic factors for acute and late skin reactions in radiotherapy patients. International Journal of Radiation Oncology Biology Physics, 36, 1065-1075. doi:10.1016/S0360-3016(96)00426-9
[6] Twardella, D. and Chang-Claude, J. (2002) Studies on radiosensitivity from an epidemiological point of view - overview of methods and results. Radiotherapy Oncology, 62, 249-260. doi:10.1016/S0167-8140(01)00491-1
[7] Gatti, R.A. (2001) The inherited basis of human radiosensitivity. Acta Oncologica, 40, 702-711. doi:10.1080/02841860152619115
[8] Oren, M. (2003) Decision making by p53: Life, death and cancer. Cell Death and Differentiation, 10, 431-442. doi:10.1038/sj.cdd.4401183
[9] Yee, K.S. and Vousden, K.H. (2005) Complicating the complexity of p53. Carcinogenesis, 26, 1317-1322. doi:10.1093/carcin/bgi122
[10] J?nicke, R.U., Sohn, D. and Schulze-Osthoff, K. (2008) The dark side of a tumor suppressor: Anti-apoptotic p53. Cell Death and Differentiation, 15, 959-976. doi:10.1038/cdd.2008.33
[11] Levine, A.J. (1997) P53 the cellular gatekeeper for growth and division. Cell, 88, 323-331. doi:10.1016/S0092-8674(00)81871-1
[12] Drané, P., Alvarez, S., Meiller, A. and May, E. (2002) L'activation de la protéine p53, un événement déterminant de la réponse cellulaire aux radiations ionisantes. Médecine Nucléaire Imagerie Fonctionnelle et Métabolique, 26, 139-147.
[13] Fei, P. and El-Deiry, W.S. (2003) P53 and radiation responses. Oncogene, 22, 5774-5783. doi:10.1038/sj.onc.1206677
[14] Cavalcanti Júnior, G.B.M., Scheiner, A.M., Oliveira, J.G.P., Vasconcelos, F.C., Ferreira, A.C.S. and Maia, R.C. (2003) Citometria de fluxo, imunocitoquímica e western blot na detec??o da express?o da proteína p53 em células tumorais: uma análise comparative. Revista Brasileira de Análises Clínicas, 35, 125-142.
[15] Cavalcanti, M.B., Amaral, A.J., Fernandes, T.S., Melo, J.A. and Machado, C.G.F. (2008) P53 protein expression levels as bioindicator of individual exposure to ionizing radiation by flow cytometry. Molecular and Cellular Biochemistry, 308, 127-131.
[16] doi:10.1007/s11010-007-9620-5 Bacal, N.S. and Faulhaber, M.H.W. (2003) Aplica??o prática em citometria de fluxo, Atheneu, S?o Paulo.
[17] Boreham, D.R., Gale, K.L., Maves, S.R., Walker, J.-A. and Morrison, D.P. (1996) Radiation-induced apoptosis in human lymphocytes: Potential as a biological dosimeter. Health Physics, 71, 685-691. doi:10.1097/00004032-199611000-00007
[18] Seki, H., Iwai, K., Kanegane, H., Konno, A., Ohta, K., Ohta, K., Yachie, A., Taniguchi, N. and Miyawaki, T. (1995) Differential protective action of cytokines on radiation-induced apoptosis of peripheral lymphocytes subpopulations. Cellular Immmunology, 163, 30-36. doi:10.1006/cimm.1995.1095
[19] Schnarr, K., Dayes, I., Sathya, J. and Boreham, D. (2007) Individual radiosensitivity and its relevance to health physics. Dose Response, 5, 333-348. doi:10.2203/dose-response.07-022.Schnarr
[20] Borgmann, K., Dikomey, E., Petersen, C., Feyer, P. and Hoeller, U. (2009) Sex-specific aspects of tumor therapy. Radiation Environmental Biophysics, 48, 15-124. doi:10.1007/s00411-009-0216-1
[21] Guerquin, M.-J., Duquenne, C., Coffigny, H., Rouiller-Fabre, V., Lambrot, R., Bakalska, M., Frydman, R., Habert, R. and Livera, G. (2008) Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation. Human Reproduction, 24, 670-678. doi:10.1093/humrep/den410
[22] Alsbeih, G., El-Sebaie, M., Al-Rajhin, N., Allam, A., Al-buhairi, M., Al-Harbi, N., Khafaga, Y., Alsubael, M. and Al-Shabanah, M. (2004) Relationship between radiosensitivity and normal tissue complications in Saudi cancer patients treated with radiotherapy. Journal of the Egyptian National Cancer Institute, 16, 216-223.
[23] Gudkov, A.V. and Komarova, E.A. (2003) The role of p53 in determining sensitivity to radiotherapy. Nature Reviews Cancer, 3, 117-129. doi:10.1038/nrc992
[24] Murray-Zmijewski, F., Lane, D.P. and Bourdon, J.C. (2006) P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death and Differentiation, 13, 962-972. doi:10.1038/sj.cdd.4401914
[25] Dainiak, N. (2002) Hematologic consequences of exposure to ionizing radiation. Experimental Hematology, 30, 513-528. doi:10.1016/S0301-472X(02)00802-0
[26] MacCallum, D.E., Hupp, T.R., Midgley, C.A., Stuart, D., Campbell, S.J., Harper, A., Walsh, F.S., Wright, E.G., Balmain, A., Lane, D.P. and Hall, P.A. (1996) The p53 response to ionising radiation in adult and developing murine tissues. Oncogene, 13, 2575-2587.
[27] Hall, E.J. and Giaccia, A.J. (2006) Radiosensitivity and cell age in the mitotic cycle. In: Radiobiology for the Radiologist, 6th edition, Lippincott Wilkins & Williams, Philadelphia, 47-59.
[28] Greve, B., Dreffke, K., Rickinger, A., K?nemann, S., Fritz, E., Eckardt-Schupp, F., Amler, S., Sauerland, C., Braselmann, H., Sauter, W., Illig, T., Schmezer, P., Gomolka, M., Willich, N. and B?lling, T. (2009) Multicentric investigation of ionising radiation-induced cell death as a predictive parameter of individual radiosensitivity. Apoptosis, 14, 226-235. doi:10.1007/s10495-008-0294-6
[29] Guirado, D. and Almodóvar, J.M.R. (2003) Prediction of normal tissue response and individualization of doses in radiotherapy. Physics in Medicine and Biology, 48, 3213-3223. doi:10.1088/0031-9155/48/19/008
[30] Ramsay, J. and Birrell, G. (1995) Normal tissue radiosensitivity in breast cancer patients. International Journal of Radiation Oncology Biology Physics, 31, 339-344. doi:10.1016/0360-3016(94)00478-4
[31] Ozsahin, M., Ozsahin, H., Shi, Y., Larsson, B., Würgler, F.E. and Crompton, N.E.A. (1997) Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. International Journal of Radiation Oncology Biology Physics, 38, 429-440. doi:10.1016/S0360-3016(97)00038-2
[32] Nú?ez, M.I., Guerrero, M.R., López, E., del Moral, M.R., Valenzuela, M.T., Siles, E., Villalobos, M., Pedraza, V., Peacock, J.H. and Ruiz de Almodóvar, J.M. (1998) DNA damage and prediction of radiation response in lymphocytes and epidermal skin human cells. International Journal of Cancer, 76, 354-361. doi:10.1002/(SICI)1097-0215(19980504)76:3<354::AID-IJC12>3.0.CO;2-B
[33] West, C.M., Davidson, S.E., Elyan, S.A., Swindell, R., Roberts, S.A., Orton, C.J., Coyle, C.A., Valentine, H., Wilks, D.P., Hunter, R.D. and Hendry, J.H. (1998) The intrinsic radiosensitivity of normal and tumor cells. International Journal of Radiation Oncology Biology Physics, 73, 409-413.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.