[1]
|
WHO (2013) World Malaria Report 2013. Technical Report, WHO.
|
[2]
|
Gollin, D. and Zimmermann, C. (2007) Malaria: Disease Impacts and Long-Run Income Differences. IZA Discussion Papers 2997, Institution for the Study of Labor (IZA).
|
[3]
|
Ross, R. (1911) The Prevention of Malaria. John Murray, London.
|
[4]
|
Barbour, A.D. (1978) MacDonald’s Model and the Transmission of Bilharzia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72, 6-15. http://dx.doi.org/10.1016/0035-9203(78)90290-0
|
[5]
|
Ngwa, A.G. and Shu, W.S. (2000) A Mathematical Model for Endemic Malaria with Variable Human and Mosqioto Population. Mathematical and Computer Modelling, 32, 747-763. http://dx.doi.org/10.1016/S0895-7177(00)00169-2
|
[6]
|
Chitnis, N. (2005) Using Mathematical Models in Controlling the Spread of Malaria. Ph.D. Thesis, University of Arizona, Tucson.
|
[7]
|
Zongo, P. (2009) Modélisation mathématique de la dynamique de transmission du paludisme. Ph.D. Thesis, Universite de Ouagadougou, Ouagadougou.
|
[8]
|
Fontenille, D., Lochouarn, L., Diagne, N., Sokhna, C., Lemasson, J.J., Diatta, M., Konate, L., Faye, F., Rogier, C. and Trape, J.F. (1997) High Annual and Seasonal Variations in Malaria Transmission by Anophelines and Vector Species Composition in Dielmo, a Holoendemic Area in Senegal. American Journal of Tropical Medicine and Hygiene, 56, 247-253.
|
[9]
|
Rogier, C., Tall, A., Diagne, N., Fontenille, D., Spiegel, A. and Trape, J.F. (2000) Plasmodium falciparum Clinical Malaria: Lessons from Longitudinal Studies in Senegal. Parassitologia, 41, 255-259.
|
[10]
|
van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29-48.
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
|
[11]
|
Carnevale, P. and Vincent, R. (2009) Les anophèles, Biologie, transmission du Paludisme et lutte antivectorielle. IRD.
|
[12]
|
Kamgang, J.C. and Sallet, G. (2008) Computation of Threshold Conditions for Epidemiological Models and Global Stability of the Disease Free Equilibrium. Mathematical Biosciences, 213, 1-12.
http://dx.doi.org/10.1016/j.mbs.2008.02.005
|
[13]
|
Bame, N., Bowong, S., Mbang, J., Sallet, G. and Tewa, J.J. (2008) Global Stability for SEIS Models with n Latent Classes. Mathematical Biosciences and Engineering, 5, 20-33. http://dx.doi.org/10.3934/mbe.2008.5.20
|
[14]
|
Bowong, S. and Tewa, J.J. (2009) Mathematical Analysis of a Tuberculosis Model with Differential Infectivity. Communications in Nonlinear Science and Numerical Simulation, 14, 4010-4021.
http://dx.doi.org/10.1016/j.cnsns.2009.02.017
|
[15]
|
Perelson, A.S., Kirschner, D.E. and De Boer, R. (1993) Dynamics of HIV Infection of CD4+ T Cells. Mathematical Biosciences, 114, 81-125. http://dx.doi.org/10.1016/0025-5564(93)90043-A
|
[16]
|
Guo, H., Li, M.Y. and Shuai, Z. (2006) Global Stability of the Endemic Equilibrium of Multigroup Models. Canadian Applied Mathematics Quarterly, 14, 259-284.
|
[17]
|
Guo, H., Li, M.Y. and Shuai, Z. (2008) A Graph-Theoretic Approach to the Method of Global Lyapunov Functions. Proceedings of the American Mathematical Society, 136, 2793-2802.
http://dx.doi.org/10.1090/S0002-9939-08-09341-6
|
[18]
|
Korobeinikov, A. (2001) A Lyapunov Function for Leslie-Gower Predator-Prey Models. Applied Mathematics Letters, 14, 697-699. http://dx.doi.org/10.1016/S0893-9659(01)80029-X
|
[19]
|
Korobeinikov, A. (2004) Lyapunov Functions and Global Properties for SEIR and SEIS Models. Mathematical Medicine and Biology, 21, 75-83. http://dx.doi.org/10.1093/imammb/21.2.75
|
[20]
|
Korobeinikov, A. and Maini, P.K. (2004) A Lyapunov Function and Global Properties for SIR and SEIR Epidemiological Models with Nonlinear Incidence. Mathematical Biosciences and Engineering, 1, 57-60.
http://dx.doi.org/10.3934/mbe.2004.1.57
|
[21]
|
Korobeinikov, A. and Wake, G.C. (2002) Lyapunov Functions and Global Stability for SIR, SIRS, and SIS Epidemiological Models. Applied Mathematics Letters, 15, 955-960. http://dx.doi.org/10.1016/S0893-9659(02)00069-1
|
[22]
|
Ma, Z., Liu, J. and Li, J. (2003) Stability Analysis for Differential Infectivity Epidemic Models. Nonlinear Analysis: Real World Applications, 4, 841-856. http://dx.doi.org/10.1016/S1468-1218(03)00019-1
|
[23]
|
McCluskey, C.C. (2006) Lyapunov Functions for Tuberculosis Models with Fast and Slow Progression. Mathematical Biosciences and Engineering, 3, 603-614. http://dx.doi.org/10.3934/mbe.2006.3.603
|
[24]
|
McCluskey, C.C. (2003) A Model of HIV/AIDS with Staged Progression and Amelioration. Mathematical Biosciences, 181, 1-16. http://dx.doi.org/10.1016/S0025-5564(02)00149-9
|
[25]
|
McCluskey, C.C. (2005) A Strategy for Constructing Lyapunov Functions for Non-Autonomous Linear Differential Equations. Linear Algebra and Its Applications, 409, 100-110. http://dx.doi.org/10.1016/j.laa.2005.04.006
|
[26]
|
McCluskey, C.C. and van den Driessche, P. (2004) Global Analysis of Two Tuberculosis Models. Journal of Dynamics and Differential Equations, 16, 139-166. http://dx.doi.org/10.1023/B:JODY.0000041283.66784.3e
|
[27]
|
Tewa, J.J., Dimi, J.L. and Bowong, S. (2009) Lyapunov Functions for a Dengue Disease Transmission Model. Chaos, Solitons & Fractals, 39, 936-941. http://dx.doi.org/10.1016/j.chaos.2007.01.069
|
[28]
|
Tewa, J.J., Fokouop, R., Mewoli, B. and Bowong, S. (2012) Mathematical Analysis of a General Class of Ordinary Differential Equations Coming from Within-Hosts Models of Malaria with Immune Effectors. Applied Mathematics and Computation, 218, 7347-7361. http://dx.doi.org/10.1016/j.amc.2011.10.085
|
[29]
|
Bhatia, N.P. and Szegö, G.P. (1970) Stability Theory of Dynamical Systems. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-62006-5
|
[30]
|
LaSalle, J.P. (1968) Stability Theory for Ordinary Differential Equations. Stability Theory for Ordinary Differential Equations. Journal of Differential Equations, 41, 57-65. http://dx.doi.org/10.1016/0022-0396(68)90048-X
|
[31]
|
LaSalle, J.P. (1976) The Stability of Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia.
http://dx.doi.org/10.1137/1.9781611970432
|
[32]
|
LaSalle, J.P. (1976) Stability Theory and Invariance Principles. Dynamical Systems, Vol. I, Academic Press, New York, 211-222.
|
[33]
|
Anguelov, R., Dumont, Y., Lubuma, J. and Shillor, M. (2013) Dynamically Consistent Nonstandard Finite Difference Schemes for Epidemiological Models. Journal of Computational and Applied Mathematics, 255, 161-182.
http://dx.doi.org/10.1016/j.cam.2013.04.042
|
[34]
|
Kamgang, J.C. and Sallet, G. (2005) Global Asymptotic Stability for the Disease Free Equilibrium for Epidemiological Models. Comptes Rendus Mathematique, 341, 433-438. http://dx.doi.org/10.1016/j.crma.2005.07.015
|
[35]
|
Berman, A. and Plemmons, R.J. (1994) Nonnegative Matrices in the Mathematical Sciences, Volume 9. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
|
[36]
|
Jacquez, J.A. and Simon, C.P. (1993) Qualitative Theory of Compartmental Systems. SIAM Review, 35, 43-79.
http://dx.doi.org/10.1137/1035003
|
[37]
|
Luenberger, D.G. (1979) Introduction to Dynamic Systems. Theory, Models, and Applications. John Wiley & Sons Ltd., Hoboken.
|
[38]
|
McCluskey, C.C. (2007) Global Stability for a Class of Mass Action Systems Allowing for Latency in Tuberculosis. Journal of Mathematical Analysis and Applications, 338, 518-535. http://dx.doi.org/10.1016/j.jmaa.2007.05.012
|
[39]
|
Li, J., Blakeley, D. and Smith, R.J. (2011) The Failure of . Computational and Mathematical Methods in Medicine, 2011, Article ID: 527610. http://dx.doi.org/10.1155/2011/527610
|