Simultaneous Growth of Chaetoceros muelleri and Bacteria in Batch Cultures


The relationship between bacterial load and the microalga Chaetoceros muelleri was analyzed in a scale-up experiment. The microalga was grown during five days in a 0.4-L Erlenmeyer flask, 2-L Fernbach flask, 18-L Carboy and 400-L column, during which the cell density of C. muelleri, the abundance of heterotrophic bacteria, Vibrio spp., and total bacteria were determined. The highest specific growth rates (μ) of C. muelleri occurred during the first day of culture (0.88 to 2.29 d-1). Highest cell density was recorded on the fifth day at the 2-L (7.62 × 106 cells·mL-1) and 18-L (6.32 × 106 cells·mL-1), coinciding with the maximum counts of heterotrophic bacteria (16.55 × 105 and >30 × 105 CFU·mL-1, respectively). There was a high correlation (0.80, 0.75, 0.85; p <0.05) between microalgal cell density and total bacteria in the first three culture volumes and a low correlation (0.27; p = 0.34) at 400-L column. The highest mean concentration of total bacteria (884.13 × 105 cells·mL-1) during the five days occurred at 18-L Carboy. The concentration of total bacteria at all levels was always higher than that of heterotrophic bacteria. The average ratio of heterotrophic to total bacteria was higher in the 2-L (0.0108) and 18-L (0.0172) cultures. The high biomass of C. muelleri and the presence of Vibrio spp. at the 18-L and 400-L levels indicate that it is necessary to establish programs to prevent diseases and economic losses caused by pathogenic bacteria in penaeid shrimp farming.

Share and Cite:

Orozco-Borbón, M. , Valenzuela-Espinoza, E. and García-López, J. (2014) Simultaneous Growth of Chaetoceros muelleri and Bacteria in Batch Cultures. Advances in Microbiology, 4, 1025-1032. doi: 10.4236/aim.2014.415113.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jaime-Ceballos, B., Hernández-Llamas, A., García, T., Perez-Jar, L. and Villareal, H. (2006) Substitution of Chaetoceros mulleri by Spirulina platensis Meal in Diets for Litopenaeus schmitti Larvae. Aquaculture, 266, 215-220.
[2] Badillo-Salas, C.E., Valenzuela-Espinoza, E., González-Gómez, M.A., Pares-Sierra, G., Ley-Lou, F. and García-Esquivel, Z. (2009) Comparative Growth of Pacific Oyster (Crassostrea gigas) Postlarvae with Microfeed and Microalgal Diets. Aquaculture International, 17, 173-186.
[3] Brown, M.R., Jeffrey, S.W., Volkman, J.K. and Dunstan, G.A. (1997) Nutritional Properties of Microalgae for Mariculture. Aquaculture, 151, 315-331.
[4] Ritar, A.J., Dunstan, G.A., Nelson, M.M., Brown, M.R., Nichols, P.D., Thomas, C.W., Smith, E.G., Crear, B.J. and Kolkovski, S. (2004) Nutritional and Bacterial Profiles of Juvenile Artemia Fed Different Enrichments and during Starvation. Aquaculture, 239, 351-373.
[5] Pacheco-Vega, J.M. and Sánchez-Saavedra, M.P. (2009) The Biochemical Composition of Chaetoceros muelleri (Lemmermann Grown) with an Agricultural Fertilizer. Journal of the World Aquaculture Society, 40, 556-560.
[6] Lightner, D.V. and Redman, R.M. (1998) Shrimp Disease and Current Diagnosis Methods. Aquaculture, 164, 201-220.
[7] Lavilla-Pitogo, C.R., Leaño, F.M. and Paner, M.G. (1998) Mortalities of Pond-Cultured Juvenile Shrimp Penaeus monodon, Associated with Dominance of Luminescent Vibrios in the Rearing Environment. Aquaculture, 164, 337-349.
[8] Silva-Alciares, F., Moraga, D., Auffret, M., Tanguy, A. and Riquelme, C. (2013) Transcriptomic and Cellular Response to Bacterial Challenge (Pathogenic Vibrio parahaemolyticus) in Farmed Juvenile Haliotis fufescens Fed with or without Probiotic Diet. Journal of Invertebrate Pathology, 113, 163-176.
[9] Guillard, R.R.L. (1975) Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith, M.L. and Chanley, M.H., Eds., Culture of Marine Invertebrates Animals, Plenum Press, New York, 29-60.
[10] Porter, K.G. and Feig, Y.S. (1980) The Use of DAPI for Identifying and Counting Aquatic Microflora. Limnology Oceanography, 25, 943-948.
[11] Medina-Reyna, C.E. and Cordero-Esquivel, B. (1998) Crecimiento y composición bioquímica de la diatomea Chaetoceros muelleri Lemerman, mantenida en cultivo estático con un medio comercial. Universidad del Mar. Ciencia y Mar, 5, 19-25.
[12] Valenzuela-Espinoza, E., Gendrop-Funes,V., Pérez Castañeda, R. and Wilburn-González, J.G. (1999) Supervivencia de larvas de Litopenaeus vannamei (Boone) alimentadas con Chaetoceros muelleri producido con fertilizantes agrícolas. Ciencias Marinas, 25, 423-437.
[13] López-Elías, J.A. (2002) Evaluación cuantitativa y cualitativa de los sistemas de producción de microalgas de seis laboratorios comerciales del Noroeste de México. Ph.D. Thesis, Posgrado Interinstitucional de Ciencias Pecuarias, Universidad de Colima, Tecomán.
[14] Pacheco-Vega, J.M. (2003) Evaluación del valor nutrimental de la microalga Chaetoceros muelleri cultivada en un medio no convencional para alimentar a larvas de camarón blanco (Litopenaeus vannamei). Tesis de Maestría en Ciencias. Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada Baja California, México City.
[15] Lee, Y.K. and Hui, S. (2004) Basic Culturing Techniques. In: Richmond, A., Ed., Handbook of Microalgal Culture Biotechnology an Applied Phycology, Blackwell Publishing, 40-56.
[16] Riquelme, C.E., Fukami, K. and Ishida,Y. (1987) Annual Fluctuations of Phytoplankton and Bacterial Communities in Maizuru Bay and Their Interrelationship. Bulletin of the Japanese Society of Microbial Ecology, 2, 29-37.
[17] Riquelme, C.E. and Avendaño-Herrera, R.E. (2003) Interacción bacteria-microalga en el ambiente marino y uso potencial en acuicultura. Revista Chilena de Historia Natural, 76, 225-236.
[18] Guixa-Boixereu, N., Lysnes, K. and Pedrós-Alió, C. (1999) Viral Lysis and Bacterivory during a Phytoplankton Bloom in a Coastal Water Microcosm. Applied and Environmental Microbiology, 65, 1949-1958.
[19] Rico-Mora, R. (1995) Control biológico de la contaminación por Vibrio alginolyticus en cultivos de la diatomea Skeletonema costatum. Ph.D. Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada.
[20] Munro, P.D., Barbour. A. and Birkbeck, T.H. (1995) Comparison of the Growth and Survival and Larval Turbot in the Absence of Cultivable Bacteria with Dose in the Presence of Vibrio anguillarum, Vibrio alginolyticus or a Marine Aeromonas sp. Applied and Environmental Microbiology, 61, 4425-4428.
[21] Jensen, P.R., Kauffman, C.A. and Fenical, W. (1996) High Recovery of Culturable Bacteria from the Surfaces of Marine Algae. Marine Biology, 126, 1-7.
[22] Gómez, F., Furuya, K. and Takeda, S. (2005) Distribution of the Cyanobacterium Richelia intracellularis as an Epiphyte of the Diatom Chaetoceros compressus in the Western Pacific Ocean. Journal of Plankton Research, 27, 323-330.
[23] Cottrell, M.T. and Kirchman, D.L. (2000) Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence in Situ Hybridization. Applied and Environmental Microbiology, 66, 5116-5122.
[24] Torsvik, V. and Øvreås, L. (2002) Microbial Diversity and Function in Soil: From Genes to Ecosystems. Current Opinion in Microbiology, 5, 240-245.
[25] Lizárraga-Partida, M.L., Montoya-Rodríguez, L. and Gendrop-Funes, V. (1997) The Use of Bacterial Counts in Two Mexican Shrimp Hatcheries. Ciencias Marinas, 23, 129-140.
[26] Suminto, H.K. (1996) Effects of Bacterial Coexistence on the Growth of a Marine Diatom Chaetoceros gracilis. Fisheries Science, 62, 40-43.
[27] Fukami, K., Nishijima, T. and Ishida, Y. (1997) Stimulative and Inhibitory Effects of Bacteria on the Growth of Microscopic Algae. Hydrobiology, 358, 185-191.
[28] Graham, L.E. and Wilcox, L.W. (2000) Algae. Prentice Hall, Upper Saddle River.
[29] Santiago-Serrano, M.E. (1996) Calidad bacteriológica en un sistema de cultivo durante los estadios larvario y postlarvario del erizo rojo (Strongylocentrotus franciscanus). Tesis de licenciatura, Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada.
[30] Simidu, U. and Tsukamoto, K. (1985) Habitat Segregation and Biochemical Activities of Marine Members of the Family Vibrionaceae. Applied and Environmental Microbiology, 50, 781-790.
[31] Austin, B. and Austin, D.A. (1993) Bacterial Fish Pathogens-Disease in Faro and Wild Fish. 2nd Edition, Ellis Horwood, Ltd., New York.
[32] Lightner, D.V. (1993) Diseases of Cultured Penaeid Shrimps. In: McVey, J.P., Ed., CRC Hanbook of Mariculture, 2nd Edition, Boca Ratón.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.