Anodic Stripping Voltammetric Determination of Nitrite Using Carbon Paste Electrode Modified with Chitosan
Ibrahim H. I. Habib
DOI: 10.4236/ajac.2011.22035   PDF    HTML     6,921 Downloads   12,298 Views   Citations


A simple method for anodic stripping voltammetric determination of nitrite using carbon paste electrode modified with biomolecular chitosan, is described. In this method, the electrode is activated electrochemically by scanning 5 replicates over the potential range from +500 to +1400 mV immersing in 0.5 M HCl solution. Following this step, the nitrite sample containing 0.1 M KCl is preconcentrated on the activated electrode at +500 mV for 30 s. The deposited anions are then oxidized by different modes of sweep in the oxidation direction. Chemical and electrical parameters affecting the voltammetric measurements are optimized. The peak current is linear proportional to the NO2- concentration within the range 0.41 - 4.1 µg/ml, with detection limit 0.187 µg/m using differential pulse mode. The relative standard deviation is 0.285% for 2.46 µg/ml (five replicates). No interference is observed due to oxygen dissolved in the sample so that nitrogen purging is not needed in this case. The result obtained by the modified electrode is more accurate and selective than the unmodified electrode.

Share and Cite:

I. Habib, "Anodic Stripping Voltammetric Determination of Nitrite Using Carbon Paste Electrode Modified with Chitosan," American Journal of Analytical Chemistry, Vol. 2 No. 2, 2011, pp. 284-288. doi: 10.4236/ajac.2011.22035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. F. Swann, “The Toxicology of Nitrate, Nitrite and N-nitroso Compounds,” Journal of Agricultural and Food Chemistry, Vol. 26, No. 1, January 1975, pp. 1761-1970. doi:10.1002/jsfa.2740261119
[2] S. S. Mirvish, “Role of N-nitroso Compounds (NOC) and N-Nitrosation in Etiology of Gastric, Esophageal, Nasopharyngeal and Bladder Cancer and Contribution to Cancer of Known Exposures to NOC,” Cancer Letters, Vol. 93, No. 1, June 1995, pp. 17-48. doi:10.1016/0304-3835(95)03786-V
[3] P. Sharma and R. Sharma, “Sequential Trace Determination of Nitrate and Nitrite in Natural Waters by Differential Pulse Polarography,” International Journal of Environmental Analytical Chemistry, Vol. 82, No. 1, 2002, pp. 7-11. doi:10.1080/03067310290024049
[4] H. Walter and J. J. Specchio, “Determination of Nitrite and Nitrate by Differential Pulse Polarography with Simultaneous Nitrogen Purging,” Analytical Chemistry, Vol. 64, No. 11, 1992, pp. 1313-1322. doi:10.1021/ac00035a021
[5] T. S. Sadallah and A. A. Banan, “Differential-Pulse Polarographic Determination of Nitrite,” Analyst, Vol. 109, No. 12, 1984, pp. 1545-1547. doi:10.1039/an9840901545
[6] Y. P. Cui, C. Z. Yang, W. Zeng, M. Oyama, W. H. Pu and J. D. Zhang, “Electrochemical Determination of Nitrite Using a Gold Nanoparticles-Modified Glassy Carbon Electrode Prepared by the Seed-Mediated Growth Technique,” Analytical Science, Vol. 23, No. 12, 2007, pp. 1421-1425. doi:10.2116/analsci.23.1421
[7] ü. T. Yilmaz and G. Somer, “Determination of Trace Nitrite by Direct and Indirect Methods Using Differential Pulse Polarography and Application,” Journal of Electroanalytical Chemistry, Vol. 624, No. 1-2, 2008, pp. 59-63. doi:10.1016/j.jelechem.2008.07.025
[8] J. R. Caetano da Rocha, L. Angnes, M. Bertotti, K. Araki and H. E. Toma, “Amperometric Detection of Nitrite and Nitrate at Tetraruthenated Porphyrin-Modified Electrodes in a Continuous-Flow Assembly,” Analytica Chimica Acta, Vol. 452, No. 1, January 2002, pp. 23-28. doi:10.1016/S0003-2670(01)01440-4
[9] A. Salimi, A. Noorbakhash and F. S. Karonian, “Amperometric Detection of Nitrite, Iodate and Periodate on Glassy Carbon Electrode Modified with Thionin and Multi-Wall Carbon Nanotubes,” International Journal of Electrochemcal Science, Vol. 1, No. 9 , 2006, pp. 435-446
[10] L. Guanghan, J. Hong and S. Dandan, “Determination of Trace Nitrite by Anodic Stripping Voltammetry,” Food Chemistry, Vol. 59, No. 4, 1997, pp. 583-587. doi:10.1016/S0308-8146(96)00290-7
[11] J. Markus and M. Fedurco, “Vitamin B12 as Coordinating Agent for the Voltammetric Determination of Nitrite in Natural Waters,” Analytica Chimica Acta, Vol. 248, No. 1, July 1991, pp. 109-115. doi:10.1016/S0003-2670(00)80875-2
[12] S. M. Silva and L. H. Mazo, “Differential Pulse Voltammetric Determination of Nitrite with Gold Ultra-Microelectrode,” Electroanalysis, Vol. 10, No. 17, 1998, pp. 1200-1203. doi:10.1002/(SICI)1521-4109(199811)10:17<1200::AID-ELAN1200>3.0.CO;2-5
[13] C. M. G. Van den Berg and H. Li, “Potentiometric and Voltammetric Responses of Carbon Fibre Electrodes,” Analytica Chimica Acta, Vol. 212, 1988, pp. 31-41. doi:10.1016/S0003-2670(00)84126-4
[14] M. Badea, A. Amine, M. Benzine, A. Curulli, D. Moscone, A. Lupu, G. Volpe and G. Palleschi, “Rapid and Selective Electrochemical Determination of Nitrite in Cured Meat in the Presence of Ascorbic Acid,” Microchimica Acta, Vol. 147, No. 1-2, 2004, pp. 51-58. doi:10.1007/s00604-004-0220-8
[15] J. E. Toth and F. C. Anson, “Electrocatalytic Reducetion of Nitrite and Nitric Oxide to Ammonia with Iron-Substituted Polyoxotungstates,” Journal of the American Chemical Society, Vol. 111, No. 7, March 1989, pp. 2444-2451. doi:10.1021/ja00189a012
[16] W. J. R. Santos, Ph. R. Lima, A. A. Tanaka, S. M. C. N. Tanaka and L. T. Kubota, “Determination of Nitrite in Food Samples by Anodic Voltammetry Using a Modified Electrode,” Food Chemistry, Vol. 113, No. 4, 2009, pp. 1206-1211. doi:10.1016/j.foodchem.2008.08.009
[17] W. Sun, S. Zhang, H. Liu, L. Jin and J. Kong, “Electrocatalytic Reduction of Nitrite at a Glassy Carbon Electrode Surface Modified with Palladium (II)-Substituted Keggin Type Heteropolytungstate,” Analytica Chimica Acta, Vol. 388, No. 1-2, May 1999, pp. 103-110. doi:10.1016/S0003-2670(99)00064-1
[18] W. Sun, F. Yang, H. Liu, L. Jin, J. Kong, S. Jin, G. Xie and J. Deng, “Electrochemical and Electrocatalytic Properties of Iridium(IV)-Substituted Dawson Type Polyoxotungstate,” Journal of Electroanalytical Chemistry, Vol. 451, No. 1-2, July 1998, pp. 49-57. doi:10.1016/S0022-0728(97)00511-1
[19] M. Thamae and T. Nyokog, “Cobalt (II) Porphyrazine Catalysed Reduction of Nitrite,” Journal of Electroanalytical Chemistry, Vol. 470, No. 2, July 1999, pp. 126- 135. doi:10.1016/S0022-0728(99)00224-7
[20] C. S. Fung and K. Y. Wong, “Electrocatalytic Reduction of Nitrite by Copper Complexes of 1, 10-Phenanthroline and 2,2′:6′,2″-Terpyridine,” Journal of Electroanalytical Chemistry, Vol. 401, No. 1-2, January 1996, pp. 263-268. doi:10.1016/0022-0728(95)04414-0
[21] L. Ruhlmann and G. Genet, “Wells–Dawson-Derived Tetrameric Complexes {K28H8[P2W15Ti3O60.5]4} Electrochemical Behaviour and Electrocatalytic Reducetion of Nitrite and of Nitric Oxide,” Journal of Electroanalytical Chemistry, Vol. 568, July 2004, pp. 315-321. doi:10.1016/j.jelechem.2004.02.020
[22] S. Liu, Z. Shi and S. Dong, “Preparation of a Composite Film Electrode Containing 12-Tungstosilicic Acid and Its Electrocatalytic Reduction for Nitrite,” Electroanalysis, Vol. 10, No. 13, 1998, pp. 891-896.
[23] S. Dong, X. Xi and M. Tian, “Study of the Electrocatalytic Reduction of Nitrite with Silicotungstic Heteropolyanion,” Journal of Electroanalytical Chemistry, Vol. 385, No. 2, 1995, pp. 227-233. doi:10.1016/0022-0728(94)03770-4
[24] L. Cheng and S. Dong, “Electrochemical Behavior and Electrocatalytic Properties of Ultrathin Films Containing Silicotungstic Heteropolyanion SiW12O404–,” Journal of the Electrochemical Society, Vol. 147, No. 2, 2000, pp. 606-612. doi:10.1149/1.1393241
[25] X. Wang, E. Wang and C. Hu, “Hybrid Inorganic-Organic Material Containing 12-Molybdophosphate Bulk-Modified Carbon Paste Electrode,” Chemistry Letters, Vol. 30, No. 10, 2001, pp. 1030-1031. doi:10.1246/cl.2001.1030
[26] N. Spataru, T. N. Rao, D. A. Tryk and A. Fujishima, “Determination of Nitrite and Nitrogen Oxides by Anodic Voltammetry at Conductive Diamond Electrodes,” Journal of Electrochemical Society, Vol. 148, No. 3, 2001, pp. E112-E117.
[27] A. J. Varma, S. V. Deshpande and J. F. Kennedy; “Metal Complexation by Chitosan and its Derivatives: A Review,” Carbohydrate Polymers, Vol. 55, No. 1, January 2004, pp. 77-93. doi:10.1016/j.carbpol.2003.08.005
[28] E. Guibal; “Interactions of Metal Ions with Chitosan-Based Sorbents: A Review,” Separation and Purification Technology, Vol. 38, No. 1, July 2004, pp. 43-74.
[29] Q. H. Yang, X. Z. Ye and Z. C. Hong, “LihuaJianyan, Huaxue-Fence,” Analytical Abstracts, Vol. 36, No. 161, 2000.
[30] X. Z. Ye, Q. H. Yang; Y. Wang and N. Q. Li, “Electrochemical Behaviour of Gold, Silver, Platinum and Palladium on the Glassy Carbon Electrode Modified by Chitosan and its Application,” Talanta, Vol. 47, No. 5, December 1998, pp. 1099-1106. doi:10.1016/S0039-9140(98)00189-1
[31] Q. H. Yang, X. Z. Ye and H. Wang, “Fenxi-Shiyanshi,” Analytical Abstracts, Vol. 17, 1998, p. 5.
[32] R. A. Y. Hassan, I. H. I. Habib and H. N. A. Hassan, “Voltammetric Determination of Lead (II) in Medical Lotion and Biological Samples Using Chitosan-Carbon Paste Electrode,” International Journal of Electrochemcal Science, Vol. 3, No. 8, 2008, pp. 935-945.
[33] J. R. Xu and B. Liu, “Preconcentration and Determination of Lead Ions at a Chitosan-Modified Glassy Carbon Electrode,” Analyst, Vol. 119, No. 7, 1994, pp. 1599-1601. doi:10.1039/an9941901599
[34] G. H. Lu, X. Yao, X. G. Wu and T. Zhan, “Determination of the Total Iron by Chitosan-Modified Glassy Carbon Electrode,” Microchemical Journal, Vol. 69, No. 1, May 2001, pp. 81-87. doi:10.1016/S0026-265X(01)00066-2
[35] J. A. Cox and P. J. Kulesza, “Oxidation and Determination of Nitrite at Modified Electrodes,” Journal of Electroanalytical Chemistry, Vol. 175, No. 1-2, September 1984, pp. 105-118. doi:10.1016/S0022-0728(84)80349-6
[36] R. B. Almeida, S. S. S. Borges and M. G. Gomes, “Determination of Nitrite in Aqueous Solutions Using the Linear Sweep Voltammetry Technique,” Analytical Letters, Vol. 32, No. 6, 1999, pp. 1203-1210. doi:10.1080/00032719908542889
[37] J. C. Miller and J. N. Miller, “Statistics for Analytical Chemistry,” 2nd Edition, 1988, Ellis Horwood Ltd., Chichester, p. 115.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.