Rapid Determination of Calcium in Milk and Water Samples by Reflectance Spectroscopy
Hayati Filik, Duygu Aksu, Reşat Apak
DOI: 10.4236/ajac.2011.22034   PDF   HTML     6,539 Downloads   12,873 Views   Citations


Reflectance spectroscopy (RS) can be used as a rapid and sensitive method for the quantitative determination of low amounts of calcium. In this analytical technique, the analyte in complex samples is extracted onto a solid sorbent matrix loaded with glyoxal bis (2-hydroxyanil (GBHA) and then quantified directly on the sorbent surface. The measurements were carried out at a wavelength of 566.1 nm yielding the largest divergence of reflectance spectra before and after reaction with the analyte element. The optimum response was obtained in 0.2 mol●L–1 NaOH solution, and the response time of the sensor was about 5 min, depending on the concentration of Ca(II). The calibration curve of Ca(II) was found to be linear on semi-logarithmic scale within the concentration range of 0.3 - 40 mg●L–1, with a LOD of 0.15 mg●L–1 in the low concentration range. The sensor response from different sensors (n = 5) gave an R.S.D. of 1.4% at 10 mg●L–1 Ca(II). The response characteristics of the sensor including dynamic range, reversibility, reproducibility, response time and lifetime are discussed in detail. The main advantages of this prototype device are sensitivity and higher selectivity over Mg(II). The proposed method has been successfully applied to the determination of Ca(II) in milk and drinking water samples.

Share and Cite:

H. Filik, D. Aksu and R. Apak, "Rapid Determination of Calcium in Milk and Water Samples by Reflectance Spectroscopy," American Journal of Analytical Chemistry, Vol. 2 No. 2, 2011, pp. 276-283. doi: 10.4236/ajac.2011.22034.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. Vi?ka?kait?, S. Tautkus and R. Kazlauskas, “Determination of Calcium in Mineral Waters by Flame Atomic Absorption Spectrometry,” Chemija, Vol. 18, No. 4, 2007, pp. 34-37.
[2] A. J. Lanou, S. E. Berkow and N. D. Barnard, “Calcium, Dairy Products, and Bone Health in Children and Young Adults: A Reevaluation of the Evidence,” Pediatrics, Vol. 115, No. 3, 2005, pp. 736-743. doi:10.1542/peds.2004-0548
[3] S. Marque, H. Jacqmin-Gadda, J. -F. Dartigues and D. Commenges, “Cardiovascular Mortality and Calcium and Magnesium in Drinking Water: An Ecological Study in Elderly People,” European Journal of Epidemiology, Vol. 18, No. 4, 2003, pp. 305-309. doi:10.1023/A:1023618728056
[4] K. Grudpan, J. Jakmunee, Y. Vaneesorn, S. Watanesk, U Aye Maung and P. Sooksamiti, “Flow Injection Spectrophotometric Determination of Calcium Using Murexide as a Color Agent,” Talanta, Vol. 46, No. 6, 1998, pp. 1245-1247. doi:10.1016/S0039-9140(97)00410-4
[5] A. Moreno-Cid, M. C. Yebra, “Continuous Ultrasound-Assisted Extraction Coupled to a Flow Injection-Flame Atomic Absorption Spectrometric System for Calcium Determination in Seafood Samples,” Analytical and Bioanalytical Chemistry, Vol. 379, No. 1, 2005, pp. 77-82. doi:10.1007/s00216-003-2452-6
[6] B. Welz, “Atomic Absorption Spectrometry,” Vancouver Coastal Health, Weinheim, 1985.
[7] R. Kataky, D. Parker and A. Teasdale, “Comparative Study of Tripodal Oxa-Amides and Oxaesters as Ionophores in Potentiometric Ion-Selective Electrodes for Alkali and Alkaline Earth Cations,” Analytica Chimica Acta, Vol. 276, No. 2, 1993, pp. 353-360. doi:10.1016/0003-2670(93)80404-9
[8] M. W. Welch, D. W. Hamar, M. J. Fettman, “Method Comparison for Calcium Determination by Flame Atomic Absorption Spectrophotometry in the Presence of Phosphate,” Clinical Chemistry, Vol. 36, No. 2, 1990, pp. 351-354.
[9] Z. Arslan, J. F. Tyson, “Determination of Calcium, Magnesium and Strontium in Soils by Flow Injection Flame Atomic Absorption Spectrometry,” Talanta, Vol. 50, No. 5, 1999, pp. 929-937. doi:10.1016/S0039-9140(99)00187-3
[10] A. P. Udoh, “Atomic Absorption Spectrometric Determination of Calcium and other Metallic Elements in Some Animal Protein Sources,” Talanta, Vol. 52, No. 6, 2000, pp. 749-754. doi:10.1016/S0039-9140(00)00368-4
[11] T. J. Cardwell, R. W. Cattrall, G. J. Cross, R. I. Mrzljak and G. R. Scollary, “Determination of Calcium in Waters, Milk and Wine by Discontinuous-Flow Analysis,” Analyst, Vol. 115, No. 10, 1990, pp. 1235-1237. doi:10.1039/an9901501235
[12] P. Caglar, S. A. Tuncel, N. Malcik and J. P. Landers, “A Microchip Sensor for Calcium Determination,” Analytical and Bioanalytical Chemistry, Vol. 386, No. 5, 2006, pp. 1303-1312.
[13] N. Malcik, J. P. Ferrance, J. P. Landers and P. Caglar, “The Performance of a Microchipbased Fiber Optic Detection Technique for the Determination of Ca2+ ions in Urine,” Sensors Actuators B, Vol. 107, No. 1, 2005, pp. 24-31. doi:10.1007/s00216-006-0776-8
[14] L. F. Capitán-Vallvey, P. A. de Cienfuegos-Gálvez, M. D. F. Ramos and R. Avidad-Casta?eda, “Determination of Calcium by a Single-Use Optical Sensor,” Sensors Actuators B, Vol. 71, No. 1-2, 2000, pp. 140-146. doi:10.1016/S0925-4005(00)00602-X
[15] M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, “Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements,” Analytical Chemistry, Vol. 68, No. 8, 1996, pp. 1414-1418. doi:10.1021/ac950944k
[16] U. Schaller, E. Bakker and E. Pretsch, “Carrier Mechanism of Acidic Ionophores in Solvent Polymeric Membrane Ion-Selective Electrodes,” Analytical Chemistry, Vol. 67, No. 18, 1995, pp. 3123-3132. doi:10.1021/ac00114a005
[17] U. Schaller, E. Bakker, U. E. Spichiger and E. Pretsch, “Ionic Additives for Ion-Selective Electrodes Based on Electrically Charged Carriers,” Analytical Chemistry, Vol. 66, 1994, pp. 391-398. doi:10.1021/ac00075a013
[18] A. Kumar, S. K. Mittal, “PVC Based Dibenzo-18- Crown-6 Electrode for Ca(II) Ions,” Sensors Actuators B, Vol. 99, No. 2-3, 2004, pp. 340-346.
[19] A. El-Jammal, A. A. Bouklouze, G. J. Patriarche and G. D. Christian, “Use of Ethylene-Vinylacetate as a New Membrane Matrix for Calcium Ion-Selective Electrode Preparation,” Talanta, Vol. 38, No. 8, 1991, pp. 929-935. doi:10.1016/0039-9140(91)80274-4
[20] T. Dimitrakopoulos, J. R. Farrell and P. J. Iles, “Photo-Cured Calcium Ion-Selective Electrode for Use in Flow Injection Potentiometry that Tolerates High Perchlorate Levels,” Electroanalysis, Vol. 8, No. 4, 1996, pp. 391-395. doi:10.1002/elan.1140080417
[21] K. Suzuki, K. Watanabe, Y. Matsumoto, M. Kobayashi, S. Sato, D. Siswanta and H. Hisamoto, “Design and Synthesis of Calcium and Magnesium Ionophores Based on Double-Armed Diazacrown Ether Compounds and Their Application to an Ion Sensing Component for an Ion-Selective Electrode,” Analytical Chemistry, Vol. 67, No. 2, 1995, 324-334. doi:10.1021/ac00098a016
[22] W. E. Morf, K. Seiler, B. Rusterholz, W. Simon, “Design of a Novel Calcium-Selective Optode Membrane Based on Neutral Ionophores,” Analytical Chemistry, Vol. 62, No. 7, 1990, pp. 738-742. doi:10.1021/ac00206a018
[23] U. Lange, N. V. Roznyatovskaya and V. M. Mirsky, “Conducting Polymers in Chemical Sensors and Arrays,” Analytica Chimica Acta, Vol. 614, No. 1, 2008, pp. 1-26. doi:10.1016/j.aca.2008.02.068
[24] D. Goldstein and R. Stark-Mayer, “New Specific Test for Calcium”, Analytica Chimica Acta, Vol. 19, 1958, pp. 437-439. doi:10.1016/S0003-2670(00)88191-X
[25] J. M. Sunshine, C. M. Pieters and S. F. Pratt, “Deconvolution of Mineral Absorption Bands: An Improved Approach,” Journal of Geophysical Research, Vol. 95, No. B5, 1990, pp. 6955-6966. doi:10.1029/JB095iB05p06955
[26] M. Ahmad and R. Narayanaswamy, “Fibre Optic Reflectance Sensor for the Determination of Aluminium (III) in Aqueous Environment,” Analytica Chimica Acta, Vol. 291, No. 3, 1994, pp. 255-260. doi:10.1016/0003-2670(94)80020-0
[27] S. H. Alabbas, D. C. Ashworth, B. Bezzaa, S. A. Momin and R. Narayanaswamy, “Factors Affecting the Response Time of an Optical-Fibre Reflectance pH Sensor,” Sensors Actuators A, Vol. 51, No. 2, 1996, 129-134. doi:10.1016/0924-4247(95)01212-5
[28] H. Filik, M. M. Hayvali, E. Kili?, R. Apak, D. Aksu, Z. Yanaz and T. Cengel, “Development of an Optical Fibre Reflectance Sensor for P-Aminophenol Detection Based on Immobilised Bis-8-hydroxyquinoline,” Talanta, Vol. 77, No. 1, 2008, pp. 103-109. doi:10.1016/j.talanta.2008.05.045
[29] H. Filik, D. Aksu, R. Apak, I. Sener and E. K?l?c, “An Optical Fibre Reflectance Sensor for P-aminophenol Determination Based on Tetrahydroxycalix[4]arene as Sensing Reagent,” Sensors Actuators B, Vol. 136, No. 1-2, 2009, pp. 105-112. doi:10.1016/j.snb.2008.11.011
[30] I. Oehme and O. S. Wolfbeis, “Optical Sensors for Determination of Heavy Metal Ions,” Microchimica Acta, Vol. 126, No. 3, 1997, pp. 177-192. doi:10.1007/BF01242319
[31] N. A. Yusof and M. Ahmad, “A Flow Cell Optosensor for Lead Based on Immobilized Gallocynin in Chitosan Membrane,” Talanta, Vol. 58, No. 3, 2002, pp. 459-466. doi:10.1016/S0039-9140(02)00308-9
[32] N. Mahendra, P. Gangaiya, S. Sotheeswaran and R. Narayanaswamy, “Investigation of a Fibre Optic Copper Sensor Based on Immobilised [alpha]-Benzoinoxime (cupron),” Sensors Actuators B, Vol. 90, No. 1-3, 2003, pp. 118-123. doi:10.1016/S0925-4005(03)00044-3
[33] A. A. Ensafi and M. Fouladgar, “Development of a Spectrophotometric Optode for the Determination of Hg (II) ,” IEEE Sensors Journal, Vol. 8, No. 4, 2008, pp. 347-353. doi:10.1109/JSEN.2008.917482

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.