Rapid Method for the Determination of Total Monosaccharide in Enterobacter cloacae Strains Using Fourier Transform Infrared Spectroscopy

DOI: 10.4236/ajac.2011.22025   PDF   HTML     6,278 Downloads   10,511 Views   Citations

Abstract

Fourier Transform Infrared Spectroscopy (FTIR) was used to quantify total monosaccharide content in the bacterium Enterobacter cloacae and several of its biofilm mutants. Bacterial biofilm samples were grown on trypticase soy agar, and 30 µL aliquots of aqueous sample bacterial plus biofilm were deposited into the center of barium fluoride crystals and dried at 50°C for 1-hour before being scanned by FTIR. The total amounts of monosaccharides were estimated using the absorbance of the mono-saccharide peak, 1192 - 958 cm–1, and normalized using the amide II peak, 1585 - 1483 cm–1. This method provided a linear correlation between the absorbance of the monosaccharide peak and concentration of monosaccharide in standard monosaccharides, fructose, glucose, mannose, and rhamnose, over a concentration range of 0.5 - 2.0 mg/mL.

Share and Cite:

R. Delle Bovi, A. Smits and H. Pylypiw, "Rapid Method for the Determination of Total Monosaccharide in Enterobacter cloacae Strains Using Fourier Transform Infrared Spectroscopy," American Journal of Analytical Chemistry, Vol. 2 No. 2, 2011, pp. 212-216. doi: 10.4236/ajac.2011.22025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. S. Stewart and J. William Costerton, “Antibiotic Resistance of Bacteria in Biofilms,” The Lancet, Vol. 358, No. 9276, July 2001, pp. 135-138.
[2] D. G. Karamanev, “Model of the Biofilm Structure of Thiobacillus Ferrooxidans,” Journal of Biotechnology, Vol. 20, No. 8, 1991, pp. 51-64. doi:10.1016/0168-1656(91)90034-S
[3] R. Rozen, G. Bachrach, M. Bronshteyn, I. Gedalia and D. Steinberg, “The Role of Fructans on Dental Biofilm Formation by Streptococcus Sobrinus, Streptococcus Mutans, Streptococcus Gordonii and Actinomyces Viscosus,” FEMS Microbiology Letters, Vol. 195, No. 2, February 2001, pp. 205-210.
[4] A. Chokr, D. Watier, H. Eleaume, B. Pangon, J. Ghnassia, D. Mack and S. Jabbouri, “Correlation between Biofilm Formation and Production of Polysaccharide Intercellular Adhesin in Clinical Isolates of Coagulase-Negative Staphylococci,” International Journal of Medical Microbiology, Vol. 296, No. 10, 2006, pp. 381-388. doi:10.1016/j.ijmm.2006.02.018
[5] P. D. Majors, J. S. McLean, G. E. Pinchuk, J. K. Fredrickson, Y. A. Gorby, K. R. Minard and R. A. Wind, “NMR Methods for in Situ Biofilm Metabolism Studies,” Journal of Microbiological Methods, Vol. 62, No. 9, 2005, pp. 337-344. doi:10.1016/j.mimet.2005.04.017
[6] A. Al-Ahmad, M. Wiedmann-Al-Ahmad, T. M. Auschill, M. Follo, G. Braun, E. Hellwig and N. B. Arweiler, “Effects of Commonly Used Food Preservatives on Biofilm Formation of Streptococcus Mutans in Vitro,” Archives of Oral Biology, Vol. 53, No. 8, 2008, pp. 765-772. doi:10.1016/j.archoralbio.2008.02.014
[7] S. Garip, A. C. Gozen and F. Severcan, “Use of Fourier Transform Infrared Spectroscopy for Rapid Comparative Analysis of Bacillus and Micrococcus Isolates,” Food Chemistry, Vol. 113, No. 4, 2009, pp. 1301-1307.
[8] S. Bureau, D. Ruiz, M. Reich, B. Gouble, D. Bertrand, J. Audergon and C. M. G. C. Renard, “Application of ATR-FTIR for a Rapid and Simultaneous Determination of Sugars and Organic Acids in Apricot Fruit,” Food Chemistry, Vol. 115, No. 8, 2009, pp. 1133-1140.
[9] S. Bureau, D. Ruiz, M. Reich, B. Gouble, D. Bertrand, J. Audergon and C. M. G. C. Renard, “Rapid and Non-Destructive Analysis of Apricot Fruit Quality Using FT- Near-Infrared Spectroscopy,” Food Chemistry, Vol. 113, No. 4, 2009, pp. 1323-1328.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.