In Situ UV–Vis Spectroelectrochemical Studies on the Copolymerization of Diphenylamine and o-Phenylenediamine
Lei Zhang, Baoqin Hou, Qiuhua Lang
.
DOI: 10.4236/ajac.2011.22021   PDF    HTML     8,334 Downloads   15,796 Views   Citations

Abstract

The in situ ultraviolet-visible (UV-Vis) spectroelectrochemical study on the copolymerization of diphenylamine (DPA) and o-phenylenediamine (OPD) has been performed at a constant potential of 0.8 V using indium tin oxide (ITO)-coated glass electrodes as working electrode. And also, as a comparison, the electrochemical homopolymerizations of DPA and OPD have been investigated by using the in situ spectroelectrochemical technique. The intermediate species generated during the electrochemical homopoly-merization of DPA and OPD, and the copolymerization of DPA with OPD have been identified by using the in situ spectroelectrochemical procedure. The results reveal the formation of an intermediate in the initial stage of copolymerization through the cross-reaction of the cation radicals of DPA and OPD, and the absorption peak located at 538 nm in the UV–Vis spectra is assigned to this intermediate. To further investigate the copolymerization of DPA with OPD, cyclic voltammetry (CV) has been used to study the electrochemical homopolymerization of DPA and OPD and also the copolymerization of DPA and OPD with different concentration ratios in solution. The different voltammetric characteristics between the homopolymerization and copolymerization processes exhibit the occurrence of the copolymerization, and the difference between the copolymerization of DPA and OPD with different concentration ratios shows the dependence of the copoly-merization on the concentrations of DPA and OPD. The copolymer has also been characterized by Fourier transform infrared spectroscopy (FT-IR).

Share and Cite:

L. Zhang, B. Hou and Q. Lang, "In Situ UV–Vis Spectroelectrochemical Studies on the Copolymerization of Diphenylamine and o-Phenylenediamine," American Journal of Analytical Chemistry, Vol. 2 No. 2, 2011, pp. 182-193. doi: 10.4236/ajac.2011.22021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. M. Genis, A. Boyle, M. Lapkwoski and C. Tsintavis, “Polyaniline: A Historical Survey,” Synthetic Metals, Vol. 36, No. 2, June 1990, pp. 139-182. doi:10.1016/0379-6779(90)90050-U
[2] D. Zhang and Y. Wang, “Synthesis and Applications of One-Dimensional Nano-Structured Polyaniline: An Overview,” Materials Science and Engineering, B, Vol. 134, No. 1, September 2006, pp. 9-19. doi:10.1016/j.mseb.2006.07.037
[3] A. G. MacDiarmid and A. J. Epstein, “The Concept of Secondary Doping as Applied to Polyaniline,” Synthetic Metals, Vol. 65, No. 2-3, August 1994, pp. 103-116. doi:10.1016/0379-6779(94)90171-6
[4] N. Kuramoto and A. Tomita, “Aqueous Polyaniline Suspensions: Chemical Oxidative Polymerization of Dode cylbenzene-Sulfonic Acid Aniline Salt,” Polymer, Vol. 38, No. 12, June 1997, pp. 3055-3058. doi:10.1016/S0032-3861(96)00861-0
[5] Y. Wei, G. E. Wnek, A. G. MacDiarmid, A. Ray and W. W. Foke, “Synthesis and Electrochemistry of Alkyl Ring-Substituted Polyanilines,” Journal of Physical Chemistry, Vol. 93, No. 1, January 1989, pp. 495-499. doi:10.1021/j100338a095
[6] A. Watanabe, A. Lwabuchi, Y. Lwasaki, O. Ito, K. Mori and Y. Nakamura, “Electrochemical Polymerization of Aniline and N-alkylanilines,” Macromolecules, Vol. 22, No. 9, September 1989, pp. 3521-3525. doi:10.1021/ma00199a003
[7] C. DeArmitt, S. P. Armes, J. Winter, F. A. Uribe, S. Gottesfeld and C. Mombourguette, “A Novel N-substituted Polyaniline Derivative,” Polymer, Vol. 34, No. 1, January 1993, pp. 158-162. doi:10.1016/0032-3861(93)90299-P
[8] H. S. O. Chan, S. C. Ng, W. S. Sim, K. L. Tan and B. T. G. Tan, “Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-Doping by X-Ray Photoelectron Spectroscopy,” Macromolecules, Vol. 25, No. 22, October 1992, pp. 6029-6034. doi:10.1021/ma00048a026
[9] A. A. Karyakin, A. K. Strakhova and A. K. Yatsimirsky, “Self-Doped Polyanilines Electrochemically Active in Neutral and Basic Aqueous Solutions: Electropolymerization of Substituted Anilines,” Journal of Electroanalytical Chemistry, Vol. 371, No. 1-2, June 1994, pp. 259-265. doi:10.1016/0022-0728(93)03244-J
[10] M. T. Nguyen and A. F. Diaz, “Water-Soluble Poly (ani-line-co-o-anthranilic acid) Copolymers,” Macromolecules, Vol. 28, No. 9, April 1995, pp. 3411-3415. doi:10.1021/ma00113a047
[11] A. Ito, K. Ota, K. Tanaka and T. Yamabe, “n-Alkyl Group- Substituted Poly (m-aniline)s: Syntheses and Magnetic Properties,” Macromolecules, Vol. 28, No. 16, July 1995, pp. 5618-5625. doi:10.1021/ma00120a029
[12] S. K. Dhawan and D. C. Trivedi, “Influence of Polymerization Conditions on the Properties of Poly (2-methy-laniline) and Its Copolymer with Aniline,” Synthetic metals, Vol. 60, No. 1, January 1993, pp. 63-66. doi:10.1016/0379-6779(93)91185-5
[13] A. Bagheri, M. R. Nateghi and A. Massoumi, “Electrochemical Synthesis of Highly Electroactive Polydiphenylamine/Polybenzidine Copolymer in Aqueous Solutions,” Synthetic Metals, Vol. 97, No. 2, September 1998, pp. 85-89. doi:10.1016/S0379-6779(98)00090-3
[14] N. Comisso, S. Daolio, G. Zotti, S. Zecchin, R. Salmaso and G. Mengoli, “Chemical and Electrochemical Synthesis and Characterization of Polydiphenylamine and Poly-N-methylaniline,” Journal of Electroanalytical Chemistry, Vol. 255, No. 1-2, November 1988, pp. 97-110. doi:10.1016/0022-0728(88)80007-X
[15] M. T. Nguyen and L. H. Dao, “Synthesis, Characterization and Properties of Poly (3-Methyldiphenylamine) and Poly(3-Methoxydiphenylamine),” Journal of Electroanalytical Chemistry, Vol. 289, No. 1-2, August 1990, pp. 37-53. doi:10.1016/0022-0728(90)87205-X
[16] M. T. Nguyen, R. Paynter and L. H. Dao, “Polymerization and Properties of Poly (3-Chlorodiphenylamine): A Soluble Electrochromic Conducting Polymer,” Polymer, Vol. 33, No. 1, January 1992, pp. 214-216. doi:10.1016/0032-3861(92)90589-O
[17] M. S. Wu, T. C. Wen and A. Gopalan, “Electrochemical Copolymerization of Diphenylamine and Anthranilic Acid with Various Feed Ratios,” Journal of the Electrochemical Society, Vol. 148, No. 5, May 2001, pp. D65-D73. doi:10.1149/1.1366625
[18] V. Rajendran, A. Gopalan, T. Vasudevan and T. C. Wen, “Electrochemical Copolymerization of Diphenylamine with Aniline by a Pulse Potentiostatic Method,” Journal of the Electrochemical Society, Vol. 147, No. 8, August 2000, pp. 3014-3020. doi:10.1149/1.1393641
[19] P. Santhosh, M. Sankarasubramanian, M. Thanneermalai, A. Gopalan and T. Vasudevan, “Electrochemical, Spectroelectrochemical and Spectroscopic Evidences for Copolymer Formation between Diphenylamine and m-Toluidine,” Materials Chemistry and Physics, Vol. 85, No. 2-3, June 2004, pp. 316-328. doi:10.1016/j.matchemphys.2004.01.021
[20] C. F. Chang, W. C. Chen, T. C. Wen and A. Gopalan, “Electrochemical and Spectroelectrochemical Studies on Copolymerization of Diphenylamine with 2, 5-Diaminobenzenesulfonic Acid,” Journal of the Electrochemical Society, Vol. 149, No. 8, July 2002, pp. E298-E305. doi:10.1149/1.1491984
[21] M. S. Wu, T. C. Wen and A. Gopalan, “In Situ UV-Visible Spectroelectrochemical Studies on the Copolymerization of Diphenylamine with Anthranilic Acid,” Materials Chemistry and Physics, Vol. 74, No. 1, February 2002, pp. 58-65. doi:10.1016/S0254-0584(01)00406-0
[22] J. Yano, “Electrochemical and Structural Studies on Soluble and Conducting Polymer from o-Phenylenediamine,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 33, No. 1, January 1995, pp. 2435-2441. doi:10.1002/pola.1995.080331416
[23] K. Ogura, M. Kokura and M. Nakayama, “A Conductive and Humidity-Sensitive Composite Film Derived from Poly (o-phenylenediamine) and Polyvinyl Alcohol,” Journal of the Electrochemical Society, Vol. 142, No. 9, September 1995, pp. L152-L153. doi:10.1149/1.2048730
[24] J. Yano, A. Shimoyama and K. Ogura, “Poly (o-pheny-lenediamine)-Film-Coated Electrode Having a Permselective Response to Halogenide Ions,” Journal of The Electrochemical Society, Vol. 139, No. 5, May 1992, pp. L52-L53. doi:10.1149/1.2069443
[25] Q. Deng and S. Dong, “Mediatorless Hydrogen Peroxide Electrode Based on Horseradish Peroxidase Entrapped in Poly(o-phenylenediamine),” Journal of Electroanalytical Chemistry, Vol. 377, No. 1-2, October 1994, pp. 191-195. doi:10.1016/0022-0728(94)03465-6
[26] S. R. Sivakkumar and R. Saraswathi, “Application of Poly (o-Phenylenediamine) in Rechargeable Cells,” Journal of Applied Electrochemistry, Vol. 34, No. 11, November 2004, pp. 1147-1152.
[27] L. F. D. Elia, R. L. Ortiz, O. P. Marquez, J. Marquez and Y. Martinez, “Electrochemical Deposition of Poly (o-phenylenediamine) Films on Type 304 Stainless Steel,” Journal of The Electrochemical Society, Vol. 148, No. 4, April 2001, pp. C297-C300. doi:10.1149/1.1354619
[28] S. Bilal and R. Holze, “Electrochemical Copolymerization of o-Toluidine and o-Phenylenediamine,” Journal of Electroanalytical Chemistry, Vol. 592, No. 1, July 2006, pp. 1-13. doi:10.1016/j.jelechem.2006.03.039
[29] S. Bilal and R. Holze, “Electrochemical Copolymerization of m-Toluidine and o-Phenylenediamine,” Electrochimica Acta, Vol. 52, No. 3, November 2006, pp. 1247-1257. doi:10.1016/j.electacta.2006.07.024
[30] S. Bilal and R. Holze. “In situ UV–vis Spectroelectrochemistry of Poly(o-phenylenediamine-co-m-toluidine),” Electrochimica Acta, Vol. 52, No. 17, May 2007, pp. 5346-5356. doi:10.1016/j.electacta.2007.02.034
[31] P. Santhosh, T. Vasudevan and A. Gopalan, “In Situ UV–visible Spectroelectrochemical Studies on the Copolymerization of Diphenylamine with ortho-Methoxy Aniline,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 59, No. 7, May 2003, pp. 1427-1439. doi:10.1016/S1386-1425(02)00284-6
[32] M. Thaneermalai, T. Jeyaraman, C. Sivakumar, A. Gopalan, T. Vasudevan and T. C. Wen, “In Situ UV–visible Spectroelectrochemical Evidences for Conducting Copolymer Formation between Diphenylamine and m-Methoxyaniline,” Spectrochimica Acta, Vol. 59, No. 9, July 2003, pp. 1937-1950. doi:10.1016/S1386-1425(02)00441-9
[33] C. Y. Chung, T. C. Wen and A. Gopalan, “Identification of Electrochromic Sites in Poly(diphenylamine) Using a Novel Absorbance–Potential–Wavelength Profile,” Electrochimica Acta, Vol. 47, No. 3, October 2001, pp. 423-431. doi:10.1016/S0013-4686(01)00742-3
[34] W. C. Chen, T. C. Wen and A. Gopalan, “Electrochemical and Spectroelectrochemical Evidences for Copolymer Formation between 2-Aminodiphenylamine and Aniline,” Journal of the Electrochemical Society, Vol. 148, No. 11, September 2001, pp. E427-E434. doi:10.1149/1.1405519
[35] P. Santhosh, A. Gopalan, T. Vasudevan and T. C. Wen, “Studies on Monitoring the Composition of the Copolymer by Cyclic Voltammetry and In Situ Spectroelectrochemical Analysis,” European Polymer Journal, Vol. 41, No. 1, January 2005, pp. 97-105. doi:10.1016/j.eurpolymj.2004.08.003
[36] G. R. Zhang, A. J. Zhang, X. L. Liu, et al., “Investigation of the Electropolymerization of o-Toluldine and p-Pheny-lenediamine and Their Electrocopolymerization by In Situ Ultraviolet-Visible Spectroelectrochemistry,” Journal of Applied Polymer Science, Vol. 115, No. 5, May 2010, pp. 2635-2647. doi:10.1002/app.29597
[37] G. R. Zhang, J. B. Zhang, L. P. Xiao, S. F. Zhao and J. X. Lu, “In Situ UV-Vis Spectroelectrochemistry for Electropolymerization of m-Toluidine and Electrocopolymerization of m-Toluidine with p-Phenylenediamine,” Acta Chimica Sinica, Vol. 67, No. 7, July 2009, pp. 657-664
[38] Y. B. Shim, M. S. Won and S. M. Park, “Electrochemistry of Conductive Polymers. VIII. In Situ Spectroelectrochemical Studies of Polyaniline Growth Mechanisms,” Journal of The Electrochemical Society, Vol. 137, No. 2, February 1990, pp. 538-544. doi:10.1149/1.2086494
[39] T. C. Wen, C. Sivakumar and A. Gopalan, “In-Situ Spectroelectrochemical Evidences for the Copolymerization of o-Toluidine with Diphenylamine-4-sulphonic Acid by UV-Visible Spectroscopy,” Spectrochimica Acta, Vol. 58, No. 1, January 2002, pp. 167-177. doi:10.1016/S1386-1425(01)00529-7
[40] M. S. Wu, T. C. Wen and A. Gopalan, “In Situ UV–visible Spectroelectrochemical Studies on the Copolymeriza- tion of Diphenylamine with Anthranilic Acid,” Materials Chemistry and Physics, Vol. 74, No. 1, February 2002, pp. 58-65. doi:10.1016/S0254-0584(01)00406-0
[41] A. Malinauskas, M. Bron and R. Holze, “Electrochemical and Raman Spectroscopic Studies of Electrosynthesized Copolymers and Bilayer Structures of Polyaniline and Poly(o-phenylenediamine),” Synthetic Metals, Vol. 92, No. 2, January 1998, pp. 127-137. doi:10.1016/S0379-6779(98)80102-1
[42] K. Chiba, T. Ohsaka, Y. Ohnuki and N. Oyama, “Electrochemical Preparation of a Ladder Polymer Containing Phenazine Rings,” Journal of Electroanalytical Chemistry, Vol. 219, No. 1-2, March 1987, pp. 117-124. doi:10.1016/0022-0728(87)85034-9
[43] A. H. Premasiri, W. B. Euler and Macromol, “Syntheses and Characterization of Poly(aminophenazines),” Macromolecular Chemistry and Physics, Vol. 196, No. 11, November 1995, pp. 3655-3666. doi:10.1002/macp.1995.021961118
[44] M. A. D. Valle, F. R. Diaz, M. E. Bodini, G. Alfonso and G. M. Soto, E. D. Borrego, “Electrosynthesis and Characterization of o-Phenylenediamine Oligomers”, Polymer International, Vol. 54, No. 3, March 2005, pp. 526- 532. doi:10.1002/pi.1700
[45] J. C. Chiangn and A. G. Macdiarmid, “Polyaniline: Protonic Acid Doping of the Emeraldine Form to the Metallic Regime,” Synthetic Metals, Vol. 13, No. 1-3, January 1986, pp. 193-205. doi:10.1016/0379-6779(86)90070-6
[46] M. R. Huang, X. G. Li and W. Duan, “Synthesis and Properties of a Functional Copolymer from N-ethylaniline and Aniline by an Emulsion Polymerization,” Polymer, Vol. 46, No. 5, February 2005, pp. 1523-1533. doi:10.1016/j.polymer.2004.12.021

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.