Vibrational Nonequilibrium in the Hydrogen-Oxygen Reaction at Different Temperatures


A theoretical model of chemical and vibrational kinetics of hydrogen oxidation is suggested based on the consistent account for the vibrational nonequilibrium of HO2 radical which forms in result of bimolecular recombination H + O2 = HO2 in the vibrationally excited state. The chain branching H + O2 = O + OH and inhibiting H + O2 + M = HO2 + M formal reactions are considered (in the terms of elementary processes) as a general multi-channel process of forming, intramolecular energy redistribution between modes, relaxation, and monomolecular decay of the comparatively long-lived vibrationally excited HO2 radical which is capable to react and exchange of energy with another components of the mixture. The model takes into account the vibrational nonequilibrium for the starting (primary) H2 and O2 molecules, as well as the most important molecular intermediates HO2, OH, O2(1D), and the main reaction product H2O. The calculated results are compared with the shock tube experimental data for strongly diluted H2-O2 mixtures at 1000 < T < 2500 K, 0.5 < p < 4 atm. It is demonstrated that this approach is promising from the standpoint of reconciling the predictions of the theoretical model with experimental data obtained by different authors for various compositions and conditions using different methods. It is shown that the hydrogen-oxygen reaction proceeds in absence of vibrational equilibrium, and the vibrationally excited HO2 radical acts as a key intermediate in the principally important chain branching process. For T < 1500 K, the nature of hydrogen-oxygen reaction is especially nonequilibrium, and the vibrational nonequilibrium of HO2 radical is the essence of this process.<

Share and Cite:

Skrebkov, O. (2014) Vibrational Nonequilibrium in the Hydrogen-Oxygen Reaction at Different Temperatures. Journal of Modern Physics, 5, 1806-1829. doi: 10.4236/jmp.2014.516178.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mallard, W.G., Westley, F., Herron, J.T. and Hampson, R.F. (1994) NIST Chemical Kinetics Database, Ver. 6.0. NIST Standard Reference Data, Gaithersburg.
[2] Skrebkov, O.V. and Karkach, S.P. (2007) Kinetics and Catalysis, 48, 367-375. Original Russian Text in: Kinetika i Kataliz, 48, 388-396.
[3] Bradley, J.N. (1962) Shock Waves in Chemistry and Physics. Methuen & Co LTD-John Wiley & Sons INC, London-New York.
[4] Kondratiev, V.N. and Nikitin, E.E. (1981) Gas-Phase Reactions: Kinetics and Mechanisms. Springer, Berlin.
[5] Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W. and Warnatz, J. (1992) Journal of Physical and Chemical Reference Data, 21, 411-429.
[6] Li, Z., Zhao, J., Kazakov, A. and Dryer, F.L. (2004) International Journal of Chemical Kinetics, 36, 566-575.
[7] Konnov, A.A. (2008) Combustion and Flame, 152, 507-528.
[8] Burke, M.P., Chaos, M., Ju, Y.G., Dryer, F.L. and Klippenstein, S.J. (2012) International Journal of Chemical Kinetics, 44, 444-474.
[9] Kondratyev, V.N. (1979) Rates of Elementary Chemical Processes in Gases on the Works of the Institute of Chemical Physics Akad. Nauk SSSR. In: Kondratyev, V.N., Ed., Problems of Chemical Kinetics. To the Eightieth Anniversary of Academician N.N. Semenov, Nauka, Moscow, 13-21.
[10] Dougerty, E.P. and Rabitz, H. (1980) Journal of Chemical Physics, 72, 6571-6586.
[11] Hidaka, Y., Takahashi, S., Kawano, H., Suga, M. and Gardiner Jr., W.C. (1982) Journal of Physical Chemistry, 86, 1429-1433.
[12] Karkach, S.P. and Osherov, V.I. (1999) Journal of Chemical Physics, 110, 11918-11927.
[13] Michael, J.V., Suhterland, J.W., Harding, L.B. and Wagner, A.F. (2000) Proceedings of the Combustion Institute, 28, 1471-1478.
[14] Skrebkov, O.V., Karkach, S.P., Vasil’ev, V.M. and Smirnov, A.L. (2003) Chemical Physics Letters, 375, 413-418.
[15] Belles, E. and Lauver, M.R. (1964) Journal of Chemical Physics, 40, 415-419.
[16] Skrebkov, O.V., Karkach, S.P., Ivanova, A.N. and Kostenko, S.S. (2009) Kinetics and Catalysis, 50, 461-473. Original Russian Text in: Kinetika i Kataliz, 50, 483-495.
[17] Jorfi, M., Honvault, P., Bargueno, P., Gonzalez-Lezana, T., Larregaray, P., Bonnet, L. and Halvick, P. (2009) Journal of Chemical Physics, 130, 184301.
[18] Wadlinger, R.L. and deB. Darwent, B. (1967) Journal of Physical Chemistry, 71, 2057-2061.
[19] Pack, R.T., Butcher, E.A. and Parker, G.A. (1995) Journal of Chemical Physics, 102, 5998-6012.
[20] Dobbyn, A.J., Stumpf, M., Keller, H.M. and Schinke, R. (1996) Journal of Chemical Physics, 104, 8357-8381.
[21] Harding, L.B., Troe, J. and Ushakov, V.G. (2000) Physical Chemistry Chemical Physics, 2, 631-642.
[22] Vasil’ev, V.M., Kulikov, S.V. and Skrebkov, O.V. (1977) Zhurnal Prikladnoy Mekhaniki i Tekhnicheskoy Fiziki, 4, 13-21. English Translation in: Plenum Publishing Corporation, 437-444 (1978).
[23] Skrebkov, O.V. and Kulikov, S.V. (1998) Chemical Physics, 227, 349-373.
[24] Skrebkov, O.V. (2011) Russian Journal of Physical Chemistry B, 5, 227-234. Original Russian Text in: Khimicheskaya Fizika, 30, 38.
[25] Kuznetsov, N.M. (1972) Doklady Akademii Nauk SSSR, 202, 1367-1370.
[26] Kuznetsov, N.M. (1972) Zhurnal Prikladnoy Mekhaniki i Tekhnicheskoy Fiziki, 3, 46-52.
[27] Marrone, P.V. and Treanor, C.E. (1963) Physics of Fluids, 6, 1215-1221.
[28] Chapman, S. and Cowling, T.G. (1952) The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge.
[29] Skrebkov, O.V. (1995) Chemical Physics, 191, 87-99.
[30] Fernandes-Ramos, A., Miller, J.A., Klippenstein, S.J. and Truhlar, D.G. (2006) Chemical Reviews, 106, 4518-4584.
[31] Nikitin, E.E., Osipov, A.I. and Umanskii, S.Ya. (1989) Vibration-Translational Energy Transfer in Collisions of Homonuclear Diatomic Molecules. In: Smirnov, B.M., Ed., Khimiya Plazmy, Vyp. 15, Energoatomizdat, Moscow, 3-43.
[32] Konovalova, I.A. and Umanskii, S.Ya. (1982) Khimicheskaya Fizika, 1, 901-905.
[33] Skrebkov, O.V. and Smirnov, A.L. (1992) Soviet Journal of Chemical Physics, 10, 1598-1615. Original Russian Text in: Khimicheskaya Fizika, 10, 1036-1046 (1991).
[34] Smirnov, A.L. and Skrebkov, O.V. (1992) Soviet Journal of Chemical Physics, 11, 51-63. Original Russian Text in: Khimicheskaya Fizika, 11, 35-42.
[35] Ryu, S.O., Hwang, S.M. and Rabinovitz, M.J. (1995) Journal of Physical Chemistry, 99, 13984-13991.
[36] Pavlov, V.A. and Shatalov, O.P. (2011) Kinetics and Catalysis, 52, 157-165. Original Russian Text in: Kinetika i Kataliz, 52, 163-172.
[37] Herzfeld, K.F. and Litovitz, T.A. (1959) Absorbtion and Dispersion of Ultrasonic Waves. Academic Press, New York-London.
[38] Moore, C.B. (1965) Journal of Chemical Physics, 43, 2979-2986.
[39] Ormonde, S. (1975) Reviews of Modern Physics, 47, 193-258.
[40] Sibert, E.L., Reinhardt, W.P. and Hynes, J.T. (1982) Journal of Chemical Physics, 77, 3583-3594.
[41] Sibert, E.L., Hynes, J.T. and Reinhardt, W.P. (1982) Journal of Chemical Physics, 77, 3595-3604.
[42] Zhang, D.H. and Zhang, J.Z.H. (1994) Journal of Chemical Physics, 101, 3671-3678.
[43] Mandelshtam, V.A., Taylor, H.S. and Miller, W.H. (1996) Journal of Chemical Physics, 105, 496-503.
[44] Lin, S.Y., Sun, Z., Guo, H., Zhang, D.H., Honvault, P., Xie, D.Q. and Lee, S.Y. (2008) Journal of Physical Chemistry A, 112, 602-611.
[45] Lin, S.Y., Guo, H., Honvault, P., Xu, C.X. and Xie, D.Q. (2008) Journal of Chemical Physics, 128, 014303.
[46] Troe, J. and Ushakov, V.G. (2008) Journal of Chemical Physics, 128, 204307.
[47] Landau, L. and Teller, E. (1936) Physik Zeitschrift der Sowjetunion, 10, 34-38.
[48] Keck, J. and Carrier, G. (1965) Journal of Chemical Physics, 43, 2284-2298.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.