[1]
|
Murio, D.A. (1993) The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York. http://dx.doi.org/10.1002/9781118033210
|
[2]
|
Morita, T. and Sato, K. (2011) Mollification of Fractional Derivatives Using Rapidly Decaying Harmonic Wavelet. Fractional Calculus and Applied Analysis, 14, 284-300. http://dx.doi.org/10.2478/s13540-011-0017-5
|
[3]
|
Morita, T. and Sato, K. (2011) Mollification of the Gibbs Phenomenon Using Orthogonal Wavelets. Proceedings of the Multimedia Technology (ICMT), 2011 International Conference, Hangzhou, 26-28 July 2011, 6441-6444.
http://dx.doi.org/10.1109/ICMT.2011.6002341
|
[4]
|
Morita, T. and Sato, K. (2013) Mollification Based on Wavelets. Axioms, 2, 67-84.
http://dx.doi.org/10.3390/axioms2020067
|
[5]
|
Mathieu, B., Melchior, P., Oustaloup, A. and Ceyrat, Ch. (2003) Fractional Differentiation for Edge Detection. Signal Processing, 83, 2421-2432. http://dx.doi.org/10.1016/S0165-1684(03)00194-4
|
[6]
|
Oustaloup, A. (1995) La dérivation non entière théorie synthèse et applications. Hermes, Paris.
|
[7]
|
Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, Inc., New York.
|
[8]
|
Hamming, R.W. (1998) Digital Filters. Dover Publications Inc., Mineola, New York.
|
[9]
|
Morita, T. and Sato, K. Asymptotics of Fractional Derivatives with Application to Confluent Hyper-Geometric Function. (in preparation)
|
[10]
|
Butzer, M.L. (1971) Fourier Analysis and Approximation, Vol. I, One-Dimensional Theory. Birkhäuser Verlag, Basel.
|
[11]
|
Rubin, B. (1996) Fractional Integrals and Potentials. Addison, Wesley and Longman, Edinburgh Gate, Harlow.
|
[12]
|
Ortigueira, M.D. (2011) Fractional Calculus for Scientists and Engineers. Springer, Dordrecht.
http://dx.doi.org/10.1007/978-94-007-0747-4
|
[13]
|
Murio, D.A. (1993) The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York. http://dx.doi.org/10.1002/9781118033210
|
[14]
|
Morita, T. and Sato, K. (2011) Mollification of Fractional Derivatives Using Rapidly Decaying Harmonic Wavelet. Fractional Calculus and Applied Analysis, 14, 284-300. http://dx.doi.org/10.2478/s13540-011-0017-5
|
[15]
|
Morita, T. and Sato, K. (2011) Mollification of the Gibbs Phenomenon Using Orthogonal Wavelets. Proceedings of the Multimedia Technology (ICMT), 2011 International Conference, Hangzhou, 26-28 July 2011, 6441-6444.
http://dx.doi.org/10.1109/ICMT.2011.6002341
|
[16]
|
Morita, T. and Sato, K. (2013) Mollification Based on Wavelets. Axioms, 2, 67-84.
http://dx.doi.org/10.3390/axioms2020067
|
[17]
|
Mathieu, B., Melchior, P., Oustaloup, A. and Ceyrat, Ch. (2003) Fractional Differentiation for Edge Detection. Signal Processing, 83, 2421-2432. http://dx.doi.org/10.1016/S0165-1684(03)00194-4
|
[18]
|
Oustaloup, A. (1995) La dérivation non entière théorie synthèse et applications. Hermes, Paris.
|
[19]
|
Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, Inc., New York.
|
[20]
|
Hamming, R.W. (1998) Digital Filters. Dover Publications Inc., Mineola, New York.
|
[21]
|
Morita, T. and Sato, K. Asymptotics of Fractional Derivatives with Application to Confluent Hyper-Geometric Function. (in preparation)
|
[22]
|
Butzer, M.L. (1971) Fourier Analysis and Approximation, Vol. I, One-Dimensional Theory. Birkhäuser Verlag, Basel.
|
[23]
|
Rubin, B. (1996) Fractional Integrals and Potentials. Addison, Wesley and Longman, Edinburgh Gate, Harlow.
|
[24]
|
Ortigueira, M.D. (2011) Fractional Calculus for Scientists and Engineers. Springer, Dordrecht.
http://dx.doi.org/10.1007/978-94-007-0747-4
|
[25]
|
Murio, D.A. (1993) The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York. http://dx.doi.org/10.1002/9781118033210
|
[26]
|
Morita, T. and Sato, K. (2011) Mollification of Fractional Derivatives Using Rapidly Decaying Harmonic Wavelet. Fractional Calculus and Applied Analysis, 14, 284-300. http://dx.doi.org/10.2478/s13540-011-0017-5
|
[27]
|
Morita, T. and Sato, K. (2011) Mollification of the Gibbs Phenomenon Using Orthogonal Wavelets. Proceedings of the Multimedia Technology (ICMT), 2011 International Conference, Hangzhou, 26-28 July 2011, 6441-6444.
http://dx.doi.org/10.1109/ICMT.2011.6002341
|
[28]
|
Morita, T. and Sato, K. (2013) Mollification Based on Wavelets. Axioms, 2, 67-84.
http://dx.doi.org/10.3390/axioms2020067
|
[29]
|
Mathieu, B., Melchior, P., Oustaloup, A. and Ceyrat, Ch. (2003) Fractional Differentiation for Edge Detection. Signal Processing, 83, 2421-2432. http://dx.doi.org/10.1016/S0165-1684(03)00194-4
|
[30]
|
Oustaloup, A. (1995) La dérivation non entière théorie synthèse et applications. Hermes, Paris.
|
[31]
|
Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, Inc., New York.
|
[32]
|
Hamming, R.W. (1998) Digital Filters. Dover Publications Inc., Mineola, New York.
|
[33]
|
Morita, T. and Sato, K. Asymptotics of Fractional Derivatives with Application to Confluent Hyper-Geometric Function. (in preparation)
|
[34]
|
Butzer, M.L. (1971) Fourier Analysis and Approximation, Vol. I, One-Dimensional Theory. Birkhäuser Verlag, Basel.
|
[35]
|
Rubin, B. (1996) Fractional Integrals and Potentials. Addison, Wesley and Longman, Edinburgh Gate, Harlow.
|
[36]
|
Ortigueira, M.D. (2011) Fractional Calculus for Scientists and Engineers. Springer, Dordrecht.
http://dx.doi.org/10.1007/978-94-007-0747-4
|
[37]
|
Murio, D.A. (1993) The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York. http://dx.doi.org/10.1002/9781118033210
|
[38]
|
Morita, T. and Sato, K. (2011) Mollification of Fractional Derivatives Using Rapidly Decaying Harmonic Wavelet. Fractional Calculus and Applied Analysis, 14, 284-300. http://dx.doi.org/10.2478/s13540-011-0017-5
|
[39]
|
Morita, T. and Sato, K. (2011) Mollification of the Gibbs Phenomenon Using Orthogonal Wavelets. Proceedings of the Multimedia Technology (ICMT), 2011 International Conference, Hangzhou, 26-28 July 2011, 6441-6444.
http://dx.doi.org/10.1109/ICMT.2011.6002341
|
[40]
|
Morita, T. and Sato, K. (2013) Mollification Based on Wavelets. Axioms, 2, 67-84.
http://dx.doi.org/10.3390/axioms2020067
|
[41]
|
Mathieu, B., Melchior, P., Oustaloup, A. and Ceyrat, Ch. (2003) Fractional Differentiation for Edge Detection. Signal Processing, 83, 2421-2432. http://dx.doi.org/10.1016/S0165-1684(03)00194-4
|
[42]
|
Oustaloup, A. (1995) La dérivation non entière théorie synthèse et applications. Hermes, Paris.
|
[43]
|
Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, Inc., New York.
|
[44]
|
Hamming, R.W. (1998) Digital Filters. Dover Publications Inc., Mineola, New York.
|
[45]
|
Morita, T. and Sato, K. Asymptotics of Fractional Derivatives with Application to Confluent Hyper-Geometric Function. (in preparation)
|
[46]
|
Butzer, M.L. (1971) Fourier Analysis and Approximation, Vol. I, One-Dimensional Theory. Birkhäuser Verlag, Basel.
|
[47]
|
Rubin, B. (1996) Fractional Integrals and Potentials. Addison, Wesley and Longman, Edinburgh Gate, Harlow.
|
[48]
|
Ortigueira, M.D. (2011) Fractional Calculus for Scientists and Engineers. Springer, Dordrecht.
http://dx.doi.org/10.1007/978-94-007-0747-4
|
[49]
|
Murio, D.A. (1993) The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York. http://dx.doi.org/10.1002/9781118033210
|
[50]
|
Morita, T. and Sato, K. (2011) Mollification of Fractional Derivatives Using Rapidly Decaying Harmonic Wavelet. Fractional Calculus and Applied Analysis, 14, 284-300. http://dx.doi.org/10.2478/s13540-011-0017-5
|
[51]
|
Morita, T. and Sato, K. (2011) Mollification of the Gibbs Phenomenon Using Orthogonal Wavelets. Proceedings of the Multimedia Technology (ICMT), 2011 International Conference, Hangzhou, 26-28 July 2011, 6441-6444.
http://dx.doi.org/10.1109/ICMT.2011.6002341
|
[52]
|
Morita, T. and Sato, K. (2013) Mollification Based on Wavelets. Axioms, 2, 67-84.
http://dx.doi.org/10.3390/axioms2020067
|
[53]
|
Mathieu, B., Melchior, P., Oustaloup, A. and Ceyrat, Ch. (2003) Fractional Differentiation for Edge Detection. Signal Processing, 83, 2421-2432. http://dx.doi.org/10.1016/S0165-1684(03)00194-4
|
[54]
|
Oustaloup, A. (1995) La dérivation non entière théorie synthèse et applications. Hermes, Paris.
|
[55]
|
Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, Inc., New York.
|
[56]
|
Hamming, R.W. (1998) Digital Filters. Dover Publications Inc., Mineola, New York.
|
[57]
|
Morita, T. and Sato, K. Asymptotics of Fractional Derivatives with Application to Confluent Hyper-Geometric Function. (in preparation)
|
[58]
|
Butzer, M.L. (1971) Fourier Analysis and Approximation, Vol. I, One-Dimensional Theory. Birkhäuser Verlag, Basel.
|
[59]
|
Rubin, B. (1996) Fractional Integrals and Potentials. Addison, Wesley and Longman, Edinburgh Gate, Harlow.
|
[60]
|
Ortigueira, M.D. (2011) Fractional Calculus for Scientists and Engineers. Springer, Dordrecht.
http://dx.doi.org/10.1007/978-94-007-0747-4
|