Share This Article:

Preparation, Characterization and Statistical Studies of the Physicochemical Results of Series of “B” Carbonated Calcium Hydroxyapatites Containing Mg2+ and CO2-3

Abstract Full-Text HTML XML Download Download as PDF (Size:3384KB) PP. 995-1009
DOI: 10.4236/ajac.2014.514106    2,556 Downloads   3,009 Views   Citations


In this study, series of hydroxyapatites containing Mg2+ and CO2-3 are prepared by the precipitation method with independently varying concentrations of CO2-3 and Mg2+. All the compounds are characterized by infrared spectra (IR); powder X-ray diffraction (PXRD) and elemental analysis. The physical analysis results show that the prepared compounds are pure B-type carbonate apatite. The presence of Mg2+ and CO2-3 in the apatite cause the following effects on its physical properties: a decrease in a-dimension but no changes in c-dimension and a decrease in crystallinity as shown in XDR patterns and IR spectra. The results of the chemical analysis allow us to predict the predominant substitution mechanisms for the CO2-3 and the Mg2+ incorporations in the calcium hydroxyapatites and to calculate their relative contributions x, y and z.
(II);   2. (IV);   (V). Statistical studies of the results “multiple linear regression, analysis of variance (ANOVA) and t-test of the regression coefficients” allow us to determine and to test the mathematical model proposed. Finally, the present study makes it possible to write the general formula for these com-pounds.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Abdelkader, S. , Yahia, F. and Khattech, I. (2014) Preparation, Characterization and Statistical Studies of the Physicochemical Results of Series of “B” Carbonated Calcium Hydroxyapatites Containing Mg2+ and CO2-3. American Journal of Analytical Chemistry, 5, 995-1009. doi: 10.4236/ajac.2014.514106.


[1] Kreidler, E.R. and Hummel, F.A. (1970) The Crystal Chemistry of Apatite: Structure: Fields of Fluor- and Chlorapatite. American Mineralogist, 55, 170.
[2] Legeros, R.Z. (1984) Tooth Enamel IV. In: Fearnhead, R.W. and Sugas, S., Eds., Elsevier, Amsterdam, 32-36.
[3] Ben Abdelkader, S., Khattech, I., Rey, C. and Jemal, M. (2001) Synthése, Caractérisation et Thermochimie d’Apatites Calco-Magnésiennes Hydroxylées et Fluorées. Thermochimica Acta, 376, 25-36.
[4] Terpstra, R.A. and Driessens, F.C.M. (1986) Magnesium in Tooth Enamel and Synthetic Apatites. Calcified Tissue International, 39, 348-354.
[5] Hayek, E. and Newsely, H. (1958) über die Existenz von Tricalciumphosphat in waBriger Losung. Mn. Chem., 89, 88.
[6] Rowles, S.L. (1968) Crystallographic Study of Biological Apatites. Bulletin de la Société Chimique de France, 1797.
[7] Hamad, M. and Heughebaert, J.C. (1987) Study of Apatite and Whitlockite Formation at 100°C in the System CaO-MgO-P2O5-H2O. J. Chim. Phys., 84, 985.
[8] Vignoles, M., Bonel, G. and Young, R.A. (1987) Occurrence of Nitrogenous Species in Precipitated B-Type Carbonated Hydroxyapatites. Calcified Tissue International, 40, 64-70.
[9] Vignoles, M., Bonel, G., Holcomb, D.W. and Young, R.A. (1988) Influence of Preparation Conditions on the Composition of Type B Carbonated Hydroxyapatite and on the Localization of the Carbonate Ions. Calcified Tissue International, 43, 33.
[10] Young, R.A. and Spooner, S. (1969) Neutron Diffraction Studies of Human Tooth Enamel. Archives of Oral Biology, 15, 47-63.
[11] Bigi, A., Foresti, E., Gregorini, R., Ripamonti, A., Roveri, N. and Shah, J.S. (1992) The Role of Magnesium on the Structure of Biological Apatites. Calcified Tissue International, 50, 439-444.
[12] Holden, J.L., Clement, J.G. and Phakey, P.P. (1995) Age and Temperature Related Changes to the Ultrastructure and Composition of Human Bone Mineral. Journal of Bone and Mineral Research, 10, 1400-1409.
[13] Robinson, C., Weatherell, J.A. and Hallsworth, A.S. (1981) Distribution of Magnesium in Mature Human Enamel. Caries Research, 15, 70-77.
[14] Steinfort, J., Driessens, F.C.M., Heijligers, H.J.M. and Bertseen, W. (1991) The Distribution of Magnesium in Developing Rat Incisor Dentin. Journal of Dental Research, 70, 187-191.
[15] Tsuboi, S., Nakagi, H., Ishiguro, K., Kondo, K., Mukai, M., Robinson, C. and Weatherell, J.A. (1994) Magnesium Distribution in Human Bone. Calcified Tissue International, 54, 34-37.
[16] Bigi, A., Marchetti, F., Ripamonti, A., Roveri, N. and Foresti, E. (1981) Magnesium and Strontium Interaction with Carbonate-Containing Hydroxyapatite in Aqueous Medium. Journal of Inorganic Biochemistry, 15, 317-327.
[17] Featherstone, J.D.B., Mayer, I., Driessens, F.C.M., Verbeeck, R.M.H. and Heijligers, H.J. (1983) Synthetic Apatites Containing Na, Mg, and CO3 and Their Comparison with Tooth Enamel Mineral. Calcified Tissue International, 35, 169-171.
[18] Apfelbaum, F., Mayer, I. and Featherstone, J.D.B. (1991) The Role of HPO2-4 and CO2-3 Ions in the Transformation of Synthetic Apatites to β-Ca3(PO4)2. Journal of Inorganic Biochemistry, 38, 1-8.
[19] Aoba, T., Moreno, E.C. and Shimoda, S. (1992) Competitive Adsorption of Magnesium and Calcium Ions onto Synthetic and Biological Apatites. Calcified Tissue International, 51, 143-150.
[20] Okazaki, M. and Legeros, R.Z. (1992) Crystallographic and Chemical Properties of Mg-Containing Apatites before and after Suspension in Solutions. Magnesium Research, 5, 103-108.
[21] Zhou, J.M., Zhang, X.D., Chen, J.Y., Zeng, S.X. and De Groot, K. (1993) High Temperature Characteristics of Synthetic Hydroxyapatite. Journal of Materials Science: Materials in Medicine, 4, 83-85.
[22] Legeros, R.Z., Kijkowska, R., Bautista, C. and Legeros, J.P. (1995) Synergistic Effects of Magnesium and Carbonate on Properties of Biological and Synthetic Apatites. Connective Tissue Research, 333, 203.
[23] Mayer, I., Schlam, R. and Featherstone, J.D.B. (1997) Magnesium-Containing Carbonate Apatites. Journal of Inorganic Biochemistry, 66, 1-6.
[24] Gibson, I.R. and Bonfield, W. (2002) Preparation and Characterization of Magnesium/Carbonate Co-Substituted Hydroxyapatites. Journal of Materials Science: Materials in Medicine, 13, 685-693.
[25] Baravell, S.S., Bigi, A., Ripamonti, A., Roveri, N. and Foresti, E. (1984) Thermal Behavior of Bone and Synthetic Hydroxyapatites Submitted to Magnesium Interaction in Aqueous Medium. Journal of Inorganic Biochemistry, 20, 1-12.
[26] De Maeyer, E.A.P. and Verbeeck, R.M.H. (1993) Possible Substitution Mechanisms for Sodium and Carbonate in Calciumhydroxyapatite. Bulletin des Sociétés Chimiques Belges, 102, 601-609.
[27] De Maeyer, E.A.P., Verbeeck, R.M.H. and Pieters, I.Y. (1996) Influence of the Solution Composition on the Stoichiometry of Na+- and of K+-Containing Carbonated Apatites Obtained by the Hydrolysis of Monetite. Journal of Crystal Growth, 169, 539-547.
[28] De Maeyer, E.A.P., Verbeeck, R.M.H. and Pieters, I.Y. (1996) Effect of K+ on the Stoichiometry of Carbonated Hydroxyapatite Obtained by the Hydrolysis of Monetite. Inorganic Chemistry, 35, 857-863.
[29] Charlot, G. (1966) Les Méthodes de la Chimie Analytique. Masson, Paris.
[30] Gee, A. and Deitz, V.R. (1953) Determination of Phosphate by Differential Spectrophotometry. Analytical Chemistry, 25, 1320-1324.
[31] Legeros, R.Z. (1991) Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Science, 15, 89-95.
[32] Snedecor, G.W. and Cochran, W.G. (1980) Statistical Methods. 7th Edition, The Iowa State University Press, Ames.
[33] Borcard, D. (2009) Regression Multiple. Université de Montréal, Montréal.
[34] Bel Hadj Yahia, F. and Jemal, M. (2010) Synthesis, Structural Analysis and Thermochemistry of B-Type Carbonate Apatites. Thermochimica Acta, 505, 22-32.
[35] Rockh B. Hadj Yahia, F. and Khattech, I. (2014) Statistical Studies of the Physicochemical Analytic Results of a Series of Synthetic Calcium Hydroxyapatite Containing Carbonate and Sodium. American Journal of Analytical Chemistry, 5, 343-357.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.