Share This Article:

A Novel Signal Processing Coprocessor for n-Dimensional Geometric Algebra Applications

Abstract Full-Text HTML XML Download Download as PDF (Size:2752KB) PP. 274-291
DOI: 10.4236/cs.2014.511029    3,174 Downloads   3,883 Views   Citations

ABSTRACT

This paper provides an implementation of a novel signal processing co-processor using a Geometric Algebra technique tailored for fast and complex geometric calculations in multiple dimensions. This is the first hardware implementation of Geometric Algebra to specifically address the issue of scalability to multiple (1 - 8) dimensions. This paper presents a detailed description of the implementation, with a particular focus on the techniques of optimization used to improve performance. Results are presented which demonstrate at least 3x performance improvements compared to previously published work.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mishra, B. , Kochery, M. , Wilson, P. and Wilcock, R. (2014) A Novel Signal Processing Coprocessor for n-Dimensional Geometric Algebra Applications. Circuits and Systems, 5, 274-291. doi: 10.4236/cs.2014.511029.

References

[1] Dorst, L. and Mann, S. (2002) Geometric Algebra: A Computational Framework for Geometrical Applications (I). IEEE Computer Graphics and Applications, 22, 24-31.
http://dx.doi.org/10.1109/MCG.2002.999785
[2] Mann, S. and Dorst, L. (2002) Geometric Algebra: A Computational Framework for Geometrical Applications (II). IEEE Computer Graphics and Applications, 22, 58-67.
http://dx.doi.org/10.1109/MCG.2002.1016699
[3] Lasenby, J., Gamage, S., Ringer, M. and Doran, C. (2001) Geometric Algebra: Application Studies. Geometric Algebra—New Foundations, New Insights. SIGGRAPH 2001, New Orleans.
[4] Lasenby, J., Gamage, S. and Ringer, M. (2000) Modelling Motion: Tracking, Analysis and Inverse Kinematics. AFPAC’00: Proceedings of the 2nd International Workshop on Algebraic Frames for the Perception—Action Cycle. Springer-Verlag, London, 104-114.
[5] Lasenby, J., Fitzgerald, W.J., Lasenby, A.N. and Doran, C.J.L. (1998) New Geometric Methods for Computer Vision: An Application to Structure and Motion Estimation. International Journal of Computer Vision, 26, 191-213.
http://dx.doi.org/10.1023/A:1007901028047
[6] Lasenby, J. and Stevenson, A. (2000) Using Geometric Algebra for Optical Motion Capture. In: Bayro-Corrochano, E. and Sobcyzk, G., Eds., Applied Clifford Algebras in Computer Science and Engineering, Birkhauser, Boston, 147-169.
[7] Hestenes, D. (1986) New Foundations for Classical Mechanics. D. Reidel Publishing Company, Dordrecht, xi + 644 p.
http://dx.doi.org/10.1007/978-94-009-4802-0
[8] Mishra, B. and Wilson, P. (2005) VLSI Implementation of a Geometric Algebra Micro Architecture. Proceeding of ICCA 2005. ICCA, Toulouse.
[9] Hildenbrand, D. (2005) Geometric Computing in Computer Graphics Using Conformal Geometric Algebra. Computers and Graphics, 29, 795-803.
http://dx.doi.org/10.1016/j.cag.2005.08.028
[10] Perwass, C., Gebken, C. and Sommer, G. (2003) Implementation of a Clifford Algebra Co-Processor Design on a Field Programmable Gate Array. In: Ablamowicz, R., Ed., Clifford Algebras: Application to Mathematics, Physics, and Engineering, ser. Progress in Mathematical Physics, 6th International Conference on Clifford Algebras and Applications, Cookeville, TN. Birkhäuser, Boston, 561-575.
[11] Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S. and Vullo, V. (2005) CliffoSor: A Parallel Embedded Architecture for Geometric Algebra and Computer Graphics. 7th International Workshop on Computer Architecture for Machine Perception, CAMP’05, Palermo, 4-6 July 2005, 90-95.
[12] Fontijne, D. and Dorst, L. (2003) Modeling 3D Euclidean Geometry. IEEE Computer Graphics and Applications, 23, 68-78.
http://dx.doi.org/10.1109/MCG.2003.1185582
[13] Hildenbrand, D., Fontijne, D., Perwass, C. and Dorst, L. (2005) Geometric Algebra and Its Application to Computer Graphics. 25th Annual Conference of the European Association for Computer Graphics, Grenoble, 30 August-3 September 2005.
[14] Lange, H., Stock, F., Koch, A. and Hildenbrand, D. (2009) Acceleration and Energy Efficiency of a Geometric Algebra Computation Using Reconfigurable Computers and GPUs. 17th IEEE Symposium on Field Programmable Custom Computing Machines, FCCM’09, Napa, 5-7 April 2009, 255-258.
[15] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2009) An Embedded, FPGA-Based Computer Graphics Coprocessor with Native Geometric Algebra Support. Integration, the VLSI Journal, 42, 346-355.
http://dx.doi.org/10.1016/j.vlsi.2008.09.010
[16] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2013) Design and Implementation of an Embedded Coprocessor with Native Support for 5D, Quadruple-Based Clifford Algebra. IEEE Transactions on Computers, 62, 2366-2381.
http://dx.doi.org/10.1109/TC.2012.225
[17] Grassmann, H. (1877) Der ort der Hamilton’schen quaternionen in der aushdehnungslehre. Mathematische Annalen, 12, 375-386.
[18] Clifford, W.K. (1878) Applications of Grassmann’s Extensive Algebra. American Journal of Mathematics, 1, 350-358.
http://dx.doi.org/10.2307/2369379
[19] Hestenes, D. and Sobczyk, G. (1992) Clifford Algebra to Geometric Calculus. Kluwer Academic Publishers, Dordrecht.
[20] Hestenes, D., Li, H. and Rockwood, A. (2001) A Unified Algebraic framework for Classical Geometry. In: Sommer, G., Ed., Geometric Computing with Clifford Algebras, Springer, Berlin.
[21] Li, H., Hestenes, D. and Rockwood, A. (2001) Generalized Homogenous Coordinates for Computational Geometry. In: Sommer, G., Ed., Geometric Computing with Clifford Algebras, Springer, Berlin.
[22] Gebken, C. (2003) Diploma Thesis, Implementierung eines Koprozessors fur Geometrische Algebra auf einem FPGA. Master’s Thesis, Christian-Albrechts-University Kiel, Kiel.
[23] Fontijne, D. (2011) Gaigen Manual.
http://www.sourceforge.net/projects/gaigen
[24] Mishra, B. and Wilson, P. (2005) Hardware Implementation of a Geometric Algebra Processor Core. Proceedings of ACA 2005. IMACS, International Conference on Advancement of Computer Algebra, Nara, 31 July-3 August 2005, 1-5.
[25] Mishra, B. and Wilson, P. (2006) Color Edge Detection Hardware Based on Geometric Algebra. 3rd European Conference on Visual Media Production CVMP 2006, IET, London, 115-121.
[26] Stallings, W. (2003) Computer Organization and Architecture: Designing for Performance. 6th Edition, Pearson Education, Upper Saddle River.
[27] Buchanan, W. (1999) PC Interfacing, Communications and Windows Programming. Addison-Wesley, Boston.
[28] VHDL Code for GAMA.
http://www.ecs.soton.ac.uk/prw/gama.zip

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.