A Comparative Study of Electronic Properties of Bulk MoS2 and Its Monolayer Using DFT Technique: Application of Mechanical Strain on MoS2 Monolayer

Abstract

Electronic structure calculation of bulk and monolayer MoS2 has been performed using plane wave pseudopotential method based on density functional theory. The indirect band gap in the bulk MoS2 was found to be 0.9 eV, whereas in the monolayer-MoS2 the band gap of 1.57 eV was found to be direct one. The calculated physical parameters of monolayer MoS2 are found to be very close to the bulk MoS2 and compare well with available experimental and other theoretical results. The calculated density of states (DOS) may help explain this change in the nature of band gap in bulk and in monolayer MoS2. A further variation in band gap has been observed in MoS2 monolayer on applying biaxial strain.

Share and Cite:

Ahmad, S. and Mukherjee, S. (2014) A Comparative Study of Electronic Properties of Bulk MoS2 and Its Monolayer Using DFT Technique: Application of Mechanical Strain on MoS2 Monolayer. Graphene, 3, 52-59. doi: 10.4236/graphene.2014.34008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wilson, J.A. and Yoffe, A.D. (1969) The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties. Advances in Physics, 18, 193. http://dx.doi.org/10.1080/00018736900101307
[2] Kim, Y., Huang, J.L. and Lieber, C.M. (1991) Characterization of Nanometer Scale Wear and Oxidation of Transition Metal Dichalcogenide Lubricants by Atomic Force Microscopy. Applied Physics Letters, 59, 3404. http://dx.doi.org/10.1063/1.105689
[3] Hu, K.H., Huand, X.G. and Sun, X.J. (2010) Morphological Effect of MoS2 Nanoparticles on Catalytic Oxidation and Vacuum Lubrication. Applied Surface Science, 256, 2517. http://dx.doi.org/10.1016/j.apsusc.2009.10.098
[4] Fortin, E. and Sears, W. (1982) Photovoltaics Effect and Optical Absorption in MoS2. Journal of Physics and Chemistry of Solids, 43, 881. http://dx.doi.org/10.1016/0022-3697(82)90037-3
[5] Reshak, A.H. and Auluck, S. (2003) Calculated Optical Properties of 2H-MoS2, Intercalated with Lithium. Physical Review B, 68, Article ID: 125101.
[6] Mak, K.F., Lee, C., Hone, J., Shan, J. and Heinz, T.F. (2010) Atomically Thin MoS2: A New Direct Gap Semiconductor. Physical Review Letter, 105, Article ID: 136805. http://dx.doi.org/10.1103/PhysRevLett.105.136805
[7] Novoselov, K., Jiang, D., Schedlin, F., Booth, T., Khotkevich, V., Morozov, S. and Geim, A. (2005) Two Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451.
[8] Joensen, P., Frindt, R. and Morrison, S. (1986) Single Layer MoS2. Materials Research Bulletin, 21, 457. http://dx.doi.org/10.1016/0025-5408(86)90011-5
[9] Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Bolland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D. and Nicolosi, V. (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331, 568. http://dx.doi.org/10.1126/science.1194975
[10] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011) Single Layer MoS2 Transistors. Nature Nanotechnology, 6, 147. http://dx.doi.org/10.1038/nnano.2010.279
[11] Yoon, Y., Ganapathi, K. and Salahuddin, S. (2011) How Good Can Monolayer MoS2 Transistors Be? Nano Letters, 11, 3768-3773. http://dx.doi.org/10.1021/nl2018178
[12] Kumar, A. and Ahluwalia, P.K. (2012) Electronic Structure of Transition Metal Dichalcogenides Monolayers 1H-MoS2 (M = Mo, W; X = S, Se, Te) from ab Initio Theory: New Direct Band Gap Semiconductors. European Physical Journal B, 85, 186. http://dx.doi.org/10.1140/epjb/e2012-30070-x
[13] Eellis, J.K., Lucero, M.J. and Scuseria, G.E. (2011) The Indirect to Direct Band Gap Transition in Multilayered MoS2 as Predicted by Screened Hybrid Functional Density Functional Theory. Applied Physics Letters, 99, Article ID: 261908. http://dx.doi.org/10.1063/1.3672219
[14] Li, T. and Galli, G. (2007) Electronic Properties of MoS2 Nanoparticles. Journal of Physical Chemistry C, 111, 16192- 16196. http://dx.doi.org/10.1021/jp075424v
[15] Kadantsev, E.S. and Hawrylak, P. (2012) Electronic Structure of Single MoS2 Monolayer. Solid State Communications, 152, 909-913. http://dx.doi.org/10.1016/j.ssc.2012.02.005
[16] Kumar, A. and Ahluwalia, P.K. (2012) A First Principle Comparative Study of Electronic and Optical Properties of 1H-MoS2 and 2H-MoS2. Materials Chemistry and Physics, 135, 755-761. http://dx.doi.org/10.1016/j.matchemphys.2012.05.055
[17] Topsakal, M., Cahangirov, S. and Ciraci, S. (2010) The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain. Applied Physics Letters, 96, Article ID: 091912. http://dx.doi.org/10.1063/1.3353968
[18] Guinea, F., Katsnelson, M.I. and Geim, A.K. (2010) Energy Gaps and a Zero Field Quantum Hall Effect in Graphene by Strain Engineering. Nature Physics, 6, 30-33. http://dx.doi.org/10.1038/nphys1420
[19] Lu, P., Wu, X., Guo, W. and Zeng, X.C. (2012) Strain Dependent Electronic and Magnetic Properties of MoS2 Monolayer, Bilayer, Nanoribbons and Nanotubes. Physical Chemistry Chemical Physics, 14, 13035-13040. http://dx.doi.org/10.1039/c2cp42181j
[20] Pan, H. and Zhang, Y.W. (2012) Tuning the Electronic and Magnetic Properties of MoS2 Nanoribbons by Strain Engineering. Journal of Physical Chemistry C, 116, 11752-11757. http://dx.doi.org/10.1021/jp3015782
[21] Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V. and Stesmans, A. (2012) Strain Induced Semiconductor to Metal Transition in the Two Dimensional Honeycomb Structure of MoS2. Nano Research, 5, 43-48. http://dx.doi.org/10.1007/s12274-011-0183-0
[22] Shi, H., Pan, H., Zhang, Y.W. and Yakobson, B.I. (2013) Quasiparticle Band Structures and Optical Properties of Strained Monolayer MoS2 and WS2. Physical Review B, 87, Article ID: 155304. http://dx.doi.org/10.1103/PhysRevB.87.155304
[23] Feng, J., Qian, X., Huang, C. and Li, J. (2012) Strain Engineered Artificial Atom as a Broad Spectrum Solar Energy Funnel. Nature Photonics, 6, 866-872. http://dx.doi.org/10.1038/nphoton.2012.285
[24] Bertolazzi, S., Brivio, J. and Kis, A. (2011) Stretching and Breaking of Ultrathin MoS2. ACS Nano, 5, 9703-9709. http://dx.doi.org/10.1021/nn203879f
[25] Zhao, W.J., Ribeiro, R.M., Toh, M., Carvalho, A., Kloc, C., Neto, A.H.C. and Eda, G. (2013) Origin of Indirect Optical Transitions in Few Layer MoS2, WS2 and WSe2. Nano Letters, 13, 5627-5634. http://dx.doi.org/10.1021/nl403270k
[26] Yue, Q., Kang, J., Shao, Z., Zhang, X., Chang, S., Wang, G., Qin, S. and Li, J. (2012) Mechanical and Electronic Properties of Monolayer MoS2 under Elastic Strain. Physics Letters A, 376, 1166-1170. http://dx.doi.org/10.1016/j.physleta.2012.02.029
[27] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M. (2009) QUANTUM ESPRESSO: A Modular and Open Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21, Article ID: 395502. http://dx.doi.org/10.1088/0953-8984/21/39/395502
[28] Kaloni, T.P. and Mukherjee, S. (2011) Comparative Study of Graphite and Hexagonal Boron Nitride Using Pseudopotential Plane Wave Method. Modern Physics Letters B, 25, 1855-1866. http://dx.doi.org/10.1142/S0217984911027182
[29] Mukherjee, S. and Kaloni, T.P. (2012) Electronic Properties of Boron- and Nitrogen-Doped Graphene: A First-Prin- ciples Study. Journal of Nanoparticle Research, 14, 1059. http://dx.doi.org/10.1007/s11051-012-1059-2
[30] Perdew, J., Chevary, J., Vosko, S., Jackson, K., Pederson, M., Singh, D. and Fiolhais, C. (1992) Atoms, Molecules, Solids and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B, 46, 6671-6687. http://dx.doi.org/10.1103/PhysRevB.46.6671
[31] Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin Zone Integrations. Physical Review B: Solid State, 13, 5188-5192. http://dx.doi.org/10.1103/PhysRevB.13.5188
[32] Ataca, C., Shahin, H., Aktruk, E. and Ciraci, S. (2011) Mechanical and Electronic Properties of MoS2 Nano Ribbons and Their Defects. Journal of Physical Chemistry C, 115, 3934-3941. http://dx.doi.org/10.1021/jp1115146
[33] Ataca, C. and Ciraci, S. (2011) Functionalization of Single Layer MoS2 Honeycomb Structures. Journal of Physical Chemistry C, 115, 13303-13311.
[34] Lebegue, S. and Erikksso, O. (2009) Electronic Structure of Two-Dimensional Crystals from ab Initio Theory. Physical Review B, 79, Article ID: 115409. http://dx.doi.org/10.1103/PhysRevB.79.115409
[35] Boker, T., Severin, R., Muller, A., Janowitz, C., Manzke, R., Voβ, D., Kruger, P., Mazur, A. and Pollmann, J. (2001) Band Structure of MoS2, MoSe2 and α-MoTe2: Angle Resolved Photoelectron Spectroscopy and ab Initio Calculations. Physical Review B, 64, Article ID: 235305. http://dx.doi.org/10.1103/PhysRevB.64.235305
[36] Kobayashi, K. and Yamauchi, J. (1995) Electronic Structure and Scanning Tunneling Microscopy Image of Molybdenum Dichalcogenide Surface. Physical Review B, 51, 17085-17095. http://dx.doi.org/10.1103/PhysRevB.51.17085
[37] Mattheiss, L.F. (1973) Energy Bands for 2H-NbSe2 and 2H-MoS2. Physical Review Letters, 30, 784-787. http://dx.doi.org/10.1103/PhysRevLett.30.784
[38] Kuc, A., Zibouche, N. and Heine, T. (2011) Influence of Quantum Confinement on the Electronic Structure of Transi- tion Metal Sulfide TS2. Physical Review B, 83, Article ID: 245213. http://dx.doi.org/10.1103/PhysRevB.83.245213
[39] Das, R., Rakshit, B., Debnath, S. and Mahadevan, P. (2014) Microscopic Model for the Strain-Driven Direct to Indirect Band-Gap Transition in Monolayer MoS2 and ZnO. Physical Review B, 89, Article ID: 115201. http://dx.doi.org/10.1103/PhysRevB.89.115201

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.