A Recursive Approach to the Kauffman Bracket ()
Share and Cite:
Nizami, A. , Munir, M. , Saleem, U. and Ramzan, A. (2014) A Recursive Approach to the Kauffman Bracket.
Applied Mathematics,
5, 2746-2755. doi:
10.4236/am.2014.517262.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Kauffman, L.H. (1987) State Models and the Jones Polynomial. Topology, 26, 395-407.
http://dx.doi.org/10.1016/0040-9383(87)90009-7
|
[2]
|
Jaeger, F. (1990) A Combinatorial Model for the Homy Polynomial. European Journal of Combinatorics, 11, 549-555.
|
[3]
|
Reshetikhin, N.Y. (1988) Quantized Universal Enveloping Algebras, the Yang-Baxter Equation and Invariants of Links, I and II. LOMI Reprints E-4-87 and E-17-87, Steklov Institute, Leningrad, USSR.
|
[4]
|
Reidemeister, K. (1948) Knot Theory. Chelsea Publ and Co., New York.
|
[5]
|
Artin, E. (1925) Theorie der ZÖ pfe. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 4, 27-72. http://dx.doi.org/10.1007/BF02950718
|
[6]
|
Artin, E. (1947) Theory of Braids. Annals of Mathematics, 48, 101-126. http://dx.doi.org/10.2307/1969218
|
[7]
|
Birman, J.S. (1974) Braids, Links, and Mapping Class Groups. Princeton University Press, Princeton.
|
[8]
|
Manturov, V.O. (2004) Knot Theory. Chapman and Hall/CRC, Boca Raton. http://dx.doi.org/10.1201/9780203402849
|
[9]
|
Murasugi, K. (1996) Knot Theory and Its Applications. BirkhäUser, Boston.
|
[10]
|
Alexander, J. (1923) Topological Invariants of Knots and Links. Transactions of the American Mathematical Society, 20, 275-306.
|
[11]
|
Adams, C.C. (1994) The Knot Book. W H Freeman and Company, New York.
|