Pseudomonas aeruginosa BUP2—A Novel Strain Isolated from Malabari Goat Produces Type 2 Pyoverdine


This study focuses on the isolation and characterization of a novel strain of siderophore producing bacterium, i.e., Pseudomonas aeruginosa BUP2 (Pa BUP2) from the rumen of Malabari goat, coupled with qualitative and quantitative analyses of the siderophore produced by it. Pa BUP2a facultative anaerobe was tuned to be an aerobe by repeatedly growing in Benjamin flask. The new isolate was grown in a specially designed semi-synthetic medium, designated as BUP medium, and the yellowish-green pigment produced was identified as a typical siderophore by spectrophotometry, Chromazurol-S assay, thin layer chromatography and isolectric focusing (IEF). The characteristic orange fluorescence upon UV irradiation on chromatogram and absorption maximum at λ404 confirmed that the characteristic siderophore produced by Pa BUP2 was a typical pyoverdine (PVD). This PVD was further categorized under type 2 by comparing its profile on the IEF gel with that of the representative strains of each PVD types, viz., Pa O1, Pa ATCC 27853 and Pa6. Moreover, the type 2 PVD was purified by XAD-4 Amberlite column chromatography and quantified; maximum yield (11.17 mg/ml) was observed on day 4 of incubation (37°C). Thus, it was confirmed that the bacterium isolated from the rumen content of Malabari goat is a novel strain of Pa capable of producing large quantity of PVD type 2 in specially designed BUP medium under aerobic condition, and that its clinical and industrial implications remain elusive.

Share and Cite:

Unni, K. , Priji, P. , Geoffroy, V. , Doble, M. and Benjamin, S. (2014) Pseudomonas aeruginosa BUP2—A Novel Strain Isolated from Malabari Goat Produces Type 2 Pyoverdine. Advances in Bioscience and Biotechnology, 5, 874-885. doi: 10.4236/abb.2014.511102.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Visca, P., Imperi, F. and Lamont, I.L. (2007) Pyoverdine Siderophores: From Biogenesis to Biosignificance. Trends Microbiology, 15, 22-30.
[2] Meyer, J.M., Goeffroy, V.A., Baida, N., Garden, L., Izard, D., Lemanceau, P., Achouak, W. and Palleroni, N.J. (2002) Siderophore Typing a Powerful Tool for Identification of Fluorescent and Nonfluorescent Pseudomonas. Applied Environmental Microbiology, 6, 2745-2753.
[3] Linget, C., Azadi, P., MacLeodc, J.K., Dell, A. and Abdallah, M.A. (1992) Bacterial Siderophores: The Structures of the Pyoverdins of Pseudomonas fluorescens ATCC 13525. Tetrahedron Letters, 33, 1737-1740.
[4] Meyer, J.M., Stintzi, A., Coulanges, V., Shivaji, S., Voss, J.A., Taraz, K. and Budzikiewicz, H. (1998) Siderotyping of Fluorescent Pseudomonads: Characterization of Pyoverdines of Pseudornonas fluorescens and Pseudornonas putida Strains from Antarctica. Microbiology, 144, 3119-3126.
[5] Lamont, I.L., Beare, P.A., Ochsner, U., Vasil, A.I. and Vasil, M.L. (2002) Siderophore-Mediated Signaling Regulates Virulence Factor Production in Pseudomonas aeruginosa. Proceeding of the Naional Acadamy of sciences USA. 99, 7072-7077.
[6] King, E.D., Ward, M.K. and Raney, D.E. (1954) Two Simple Media for the Demonstration of Pyo-Cyanin and Fluorescin. Journal of laboratory and clinical medicine, 44, 301-307.
[7] Meyer, J.M. (2000) Pyoverdines: Pigments, Siderophores and Potential Taxonomic Markers of Fluorescent Pseudomonas Species. Archives of Microbiology, 174, 135-142.
[8] Holde, I.A. (1993) Pseudomonas aeruginosa Burn Infections: Pathogenesis and Treatment. In: Campa, M., Bendinelli M. and Friedman, H., Eds., Pseudomonas aeruginosa as an Opportunistic Pathogen, Plenum Press, New York, 275-295.
[9] Fichtenbaum, C.J., Woeltfe, K.F. and Powderly, W.G. (1994) Serious Pseudomonas aeruginosa Infections in Patients Infected with human Immunodeficiency Virus: A Case Control Study. Clinical Infectious Diseases, 19, 417-422.
[10] Meyer, J.M., Stintzi, A., De Vos Cornelis, P.D., Robert, T. and Budzikiewicz, H. (1997) Use of Siderophores to Type Pseudomonads: The Three Pseudornonas aeruginosa Pyoverdine Systems. Microbiology, 143, 35-43.
[11] Priji, P., Unni, K.N., Sajith, S. and Benjamin, S. (2013) Candida tropicalis BPU1, a Novel Isolate from the Rumen of the Malabari Goat: Is a Dual Producer of Biosurfactant and Polyhydroxybutyrate. Yeast, 30, 103-110.
[12] Priji, P., Unni, K.N., Sajith, S. and Benjamin, S. (2014) Production, Optimization and Partial Purification of Lipase from Pseudomonas sp. Strain BUP6, a Novel Rumen Bacterium Characterized from Malabari Goat. Biotechnology and Applied Biochemistry.
[13] Prive, F., Combes, S., Caquil, L., Farizon, Y., Enjalbert, F. and Troegeler-Meynadier, A. (2010) Temperature and Duration of Heating of Sunflower Oil Affect Ruminal Biohydrogenation of Linoleic Acid in Vitro. Journal of Dairy Science, 93, 711-722.
[14] Sherman, N. and Cuppucino, J.G. (1999) Microbiology A Laboratory Manual. The Benjamin/Cummings Publications, Inc., New York, 59-91.
[15] Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24, 1596-1599.
[16] Schwyn, B. and Neilands, J.B. (1987) Universal Chemical Assay for the Detection and Determination of Siderophores. Analytical Biochemistry, 160, 47-56.
[17] Bhattacharya, A. (2010) Siderophore Mediated Uptake Metal by Pseudomonas fluorescens and Its Comparison to Iron (iii) Chelation. Ceylon Journal of Science (Biological Sciences), 39, 147-155.
[18] Elliott, R.P. (1958) Some Properties of Pyoverdine, the Water-Soluble Fluorescent Pigment of the Pseudomonads. Applied Microbiology, 6, 241-246.
[19] Priji, P., Unni, K.N., Shibuvardhanan, Y. and Benjamin, S. (2011) Rumen Bacteria Transforming Vegetable Oil into Conjugated Linoleic Acid, Isolated from Indian Goats. Gregor Mendel Foundation Proceedings, Department of Botany, University of Calicut, 17 December 2011, 20-24.
[20] Oyeleke, S.B. and Okusanmi, T.A. (2008) Isolation and Characterization of Cellulose Hydrolysing Microorganism from the Rumen of Ruminants. African Journal of Biotechnology, 7, 1503-1504.
[21] Duncan, S.H., Doherty, C.J., Govan, J.R.W., Neogrady, S., Galfi, P. and Stewart, C.S. (1999) Characteristics of Sheep-Rumen Isolates of Pseudomonas aeruginosa Inhibitory to the Growth of Escherichia coli O157. FEMS Microbiology Letter, 180, 305-310.
[22] Leitner, G. and Krifucks, O. (2007) Pseudomonas aeruginosa Mastitis Outbreaks in Sheep and Goat Flocks: Antibody Production and Vaccination in a Mouse Model. Veterinary Immunology and Immunopathology, 19, 198-203.
[23] Mushin, R. and Ziv, G. (1973) An Epidemiological Study of Pseudomonas aeruginosa in Cattle and Other Animals by Pyocine Typing. Journal of Hygiene, 71, 113-122.
[24] Todar, K. (2007) Todar’s Online Textbook of Bacteriology.
[25] Albesa, I., Barberis, L.I., Pajar, M.C. and Eraso, A.J. (1989) Pyoverdine Production by Pseudomonas fluorescens in Synthetic Media with Various Sources of Nitrogen. Microbiology, 131, 3251-3254.
[26] Moore, G.R., Kadir, F.H.A., Al-Massad, F.K., Le Brun, N.E., Thomson, A.J., Greenwood, C., Keen, J.N. and Findlay, J.B.C. (1994) Structural Heterogeneity of Pseudomonas aeruginosa Bacterioferritin. Biochemical Journal, 304, 493-497.
[27] Ogunnariwo, J. and Hamilton-Mille, J.M.T. (1975) Brown- and Red-Pigmented Pseudomonas aeruginosa: Differentiation between Melanin and Pyorubrin. Journal of Medical Microbiology, 8, 199-203.
[28] Ali, S.S. and Vidhale, N.N. (2011) Evaluation of Siderophore Produced by Different Clinical Isolate Pseudomonas aeruginosa. Internationl Journal of Microbiology Research, 3, 131-135.
[29] Meyer, J.M., Neely, A., Stintzi, A., Georges, C. and Holder, I.A. (1996) Pyoverdin Is Essential for Virulence of Pseudomonas aeruginosa. Infection and Immunology, 64, 518-523.
[30] Manwar, A.V., Khandelwal, S.R., Chaudhari, B.L., Meyer, J.M. and Chincholkar, S.B. (2004) Siderophore Production by a Marine Pseudomonas aeruginosa and Its Antagonistic Action against Phytopathogenic Fungi. Applied Biochemistry and Biotechnology, 118, 243-251.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.