[1]
|
Calvo-Ochoa, E., Hernández-Ortega, K., Ferrera, P., Morimoto, S. and Arias, C. (2014) Short-Term High-Fat-and-Fructose Feeding Produces Insulin Signaling Alterations Accompanied by Neurite and Synaptic Reduction and Astroglial Activation in the Rat Hippocampus. Journal of Cerebral Blood Flow Metabolism, 34, 1001-1008. http://dx.doi.org/10.1038/jcbfm.2014.48
|
[2]
|
Luchsinger, J.A., Tang, M.X., Shea, E. and Mayeux, R. (2002) Caloric Intake and the Risk of Alzheimer Disease. Archives of Neurology, 519, 1258-1263. http://dx.doi.org/10.1001/archneur.59.8.1258
|
[3]
|
Thirumangalakudi, L., Prakasam, A., Zhang, R., Bimonte-Nelson, H., Sambamurti, K., Kindy, M.S. and Bhat, N.R. (2008) High Cholesterol-Induced Neuroinflammation and Amyloid Precursor Protein Processing Correlate with Loss of Working Memory in Mice. Journal of Neurochemistry, 106, 475-485. http://dx.doi.org/10.1111/j.1471-4159.2008.05415.x
|
[4]
|
Lim, W.L., Lam, S.M., Shui, G., Mondal, A., Ong, D., Duan, X., Creegan, R., Martins, I.J., Sharman, M.J., Taddei, K., Verdile, G., Wenk, M.R. and Martins, R.N. (2013) Effects of a High-Fat, High-Cholesterol Diet on Brain Lipid Profiles in Apolipoprotein E ε3 and ε4 Knock-In Mice. Neurobiology of Aging, 34, 2217-2224. http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.012
|
[5]
|
Hsu, T.M. and Kanoski, S.E. (2014) Blood-Brain Barrier Disruption: Mechanistic Links between Western Diet Consumption and Dementia. Frontiers in Aging Neuroscience, 6, 88. http://dx.doi.org/10.3389/fnagi.2014.00088
|
[6]
|
Benito-Leon, J., et al. (2013) Obesity and Impaired Cognitive Functioning in the Elderly: A Population-Based Cross-Sectional Study (NEDICES). European Journal of Neurology, 20, 899-906, e76-7.
|
[7]
|
Bowman, G.L., et al. (2007) Blood-Brain Barrier Impairment in Alzheimer Disease: Stability and Functional Significance. Neurology, 68, 1809-1814. http://dx.doi.org/10.1212/01.wnl.0000262031.18018.1a
|
[8]
|
Greenwood, C.E. and Winocur, G. (1996) Cognitive Impairment in Rats Fed High Fat Diets: A Specific Effect of Saturated Fatty-Acid Intake. Behavioral Neuroscience, 110, 451-459. http://dx.doi.org/10.1037/0735-7044.110.3.451
|
[9]
|
Winocur, G. and Greenwood, C.E. (2005) Studies of the Effects of High Fat Diets on Cognitive Function in a Rat Model. Neurobiology of Aging, 1, 46-49.
|
[10]
|
Quiles, J.L. and Ramirez-Tortosa, M.C. (2008) Fatty Acids and Aging. In: Chow, Ch.K., Ed., Fatty Acids in Foods and Their Implications, CRC Press, Taylor & Francis Group, New York, 955-976.
|
[11]
|
An, Y., Xu, W., Li, H., Lei, H., Zhang, L., Hao, F., Duan, Y., Yan, X., Zhao, Y., Wu, J., Wang, Y. and Tang, H. (2013) High-Fat Diet Induces Dynamic Metabolic Alterations in Multiple Biological Matrices of Rats. Journal of Proteome Research, 12, 3755-3768. http://dx.doi.org/10.1021/pr400398b
|
[12]
|
Amrein, I., Isler, K. and Lipp, H.P. (2011) Comparing Adult Hippocampal Neurogenesis in Mammalian Species and Orders: Influence of Chronological Age and Life History Stage. European Journal of Neuroscience, 34, 978-987. http://dx.doi.org/10.1111/j.1460-9568.2011.07804.x
|
[13]
|
Jacob, H.J. and Kwitek, A.E. (2002) Rat Genetics: Attaching Physiology and Pharmacology to the Genome. Nature Reviews Genetics, 3, 33-42. http://dx.doi.org/10.1038/nrg702
|
[14]
|
Gibbs, R.A., Weinstock, G.M., Metzker, M.L., Muzny, D.M., Sodergren, E.J., Scherer, S., et al. (2004) Genome Sequence of the Brown Norway Rat Yields Insights into Mammalian Evolution. Nature, 428, 493-521. http://dx.doi.org/10.1038/nature02426
|
[15]
|
Wenk, M.R. (2010) Lipidomics: New Tools and Applications. Cell, 143, 888-895. http://dx.doi.org/10.1016/j.cell.2010.11.033
|
[16]
|
Joris, I., Zand, T., Nunnari, J.J., Krolikowski, F.J. and Majno, G. (1983) Studies on the Pathogenesis of Atherosclerosis. I. Adhesion and Emigration of Mononuclear Cells in the Aorta of Hypercholesterolemic Rats. American Journal of Pathology, 113, 341-358.
|
[17]
|
Trout, D.L., Hallfrisch, J. and Behall, K.M. (2004) Atypically High Insulin Responses to Some Foods Relate to Sugars and Satiety. International Journal of Food Sciences and Nutrition, 55, 577-588. http://dx.doi.org/10.1080/09637480400029308
|
[18]
|
Eisinger, K., Liebisch, G., Schmitz, G., Aslanidis, C., Krautbauer, S. and Buechler, C. (2014) Lipidomic Analysis of Serum from High Fat Diet Induced Obese Mice. International Journal of Molecular Sciences, 15, 2991-3002. http://dx.doi.org/10.3390/ijms15022991
|
[19]
|
Gallou-Kabani, C., Vigé, A., Gross, M.S. and Junien, C. (2007) Nutri-Epigenomics: Lifelong Remodelling of Our Epigenomes by Nutritional and Metabolic Factors and Beyond. Clinical Chemistry and Laboratory Medicine, 45, 321-327. http://dx.doi.org/10.1515/CCLM.2007.081
|
[20]
|
Gallou-Kabani, C., Vigè, A., Gross, M.S., Rabès, J.P., Boileau, C., Larue-Achagiotis, C., Tomè, D., Jais, J.P. and Junien, C. (2007) C57BL/6J and A/J Mice Fed a High-Fat Diet Delineate Components of Metabolic Syndrome. Obesity, 15, 1996-2005. http://dx.doi.org/10.1038/oby.2007.238
|