[1]
|
Chitnis, A. and Sadana, A. (1989) pH-Dependent Enzyme Deactivation Models. Biotechnology and Bioengineering, 34, 804-818. http://dx.doi.org/10.1002/bit.260340610
|
[2]
|
Sadana, A. (1995) Biocatalysis: Fundamentals of Deactivation Kinetics. Prentice-Hall, Englewood Cliffs.
|
[3]
|
Joly, M (1965) Physico-Chemical Approach to the Denaturation of Proteins. Academic Press, New York.
|
[4]
|
Purdy, R.E. and Kolattukudy, P.E. (1975) Hydrolysis of Plant Cuticle by Plant Pathogens—Purification, Amino-Acid Composition, and Molecular-Weight of 2 Isoenzymes of Cutinase and a Nonspecific Esterase from Fusarium solani f. pisi. Biochemistry, 14, 2824-2831. http://dx.doi.org/10.1021/bi00684a006
|
[5]
|
Araujo, R., Silva, C., O’Neill, A., Micaelo, N., Guebitz, G., Soares, C.M., Casal, M. and Cavaco-Paulo, A. (2007) Tailoring Cutinase Activity towards Polyethylene Terephthalate and Polyamide 6.6 Fibers. Journal of Biotechnology, 128, 849-857. http://dx.doi.org/10.1016/j.jbiotec.2006.12.028
|
[6]
|
Ribitsch, D., Yebra, A.O., Zitzenbacher, S., Wu, J., Nowitsch, S., Steinkellner, G., Greimel, K., Doliska, A., Oberdorfer, G., Gruber, C.C., Gruber, K., Schwab, H., Stana-Kleinschek, K., Acero, E.H. and Guebitz, G.M. (2013) Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules, 14, 1769-1776. http://dx.doi.org/10.1021/bm400140u
|
[7]
|
Kim, Y.H., Ahn, J.Y., Moon, S.H. and Lee, J. (2005) Biodegradation and Detoxification of Organophosphate Insecticide, Malathion by Fusarium oxysporum f. sp. pisi Cutinase. Chemosphere, 60, 1349-1355. http://dx.doi.org/10.1016/j.chemosphere.2005.02.023
|
[8]
|
Dutta, K. and Dasu, V.V. (2011) Synthesis of Short Chain Alkyl Esters Using Cutinase from Burkholderia cepacia NRRL B 2320. Journal of Molecular Catalysis B: Enzymatic, 72, 150-156. http://dx.doi.org/10.1016/j.molcatb.2011.05.013
|
[9]
|
Dutta, K., Sen, S. and Veeranki, V.D. (2009) Production, Characterization and Applications of Microbial Cutinases. Process Biochemistry, 44, 127-134. http://dx.doi.org/10.1016/j.procbio.2008.09.008
|
[10]
|
Egmond, M.R. and Vlieg, J.D. (2000) Fusarium solani pisi Cutinase. Biochimie, 82, 1015-1021. http://dx.doi.org/10.1016/S0300-9084(00)01183-4
|
[11]
|
Fett, W.F., Gerard, H.C., Moreau, R.A., Osman, S.F. and Jones, L.E. (1992) Screening of Nonfilamentous Bacteria for Production of Cutin-Degrading Enzymes. Applied and Environmental Microbiology, 58, 2123-2130.
|
[12]
|
Hegde, K. and Veeranki, V.D. (2013) Production Optimization and Characterization of Recombinant Cutinases from Thermobifida fusca sp. NRRL B-8184. Applied Biochemistry and Biotechnology, 170, 654-675. http://dx.doi.org/10.1007/s12010-013-0219-x
|
[13]
|
Dutta, K., Krishnamoorthy, H. and Dasu, V.V. (2013) Novel Cutinase from Pseudomonas cepacia NRRL B 2320: Purification, Characterization and Identification of Cutinase Encoding Genes. The Journal of General and Applied Microbiology, 59, 171-184.
|
[14]
|
Maeda, H., Yamagata, Y., Abe, K., Hasegawa, F., Machida, M., Ishioka, R., Gomi, K. and Nakajima, T. (2005) Purification and Characterization of a Biodegradable Plastic-Degrading Enzyme from Aspergillus oryzae. Applied Microbiology and Biotechnology, 67, 778-788. http://dx.doi.org/10.1007/s00253-004-1853-6
|
[15]
|
Skamnioti, P., Furlong, R.F. and Gurr, S.J. (2008) Evolutionary History of the Ancient Cutinase Family in Five Filamentous Ascomycetes Reveals Differential Gene Duplications and Losses and in Magnaporthe grisea Shows Evidence of Suband Neo-Functionalization. New Phytologist, 180, 711-721. http://dx.doi.org/10.1111/j.1469-8137.2008.02598.x
|
[16]
|
Bellamy, W.D. (1977) Cellulose and Lignocellulose Digestion by Thermophilic Actinomycetes for Single Cell Protein Production. Developments in Industrial Microbiology, 18, 249-254.
|
[17]
|
Degani, O., Gepstein, S. and Dosoretz, C.G. (2002) Potential Use of Cutinase in Enzymatic Scouring of Cotton Fiber Cuticle. Applied Biochemistry and Biotechnology, 102, 277-289. http://dx.doi.org/10.1385/ABAB:102-103:1-6:277
|
[18]
|
Hegde, K. and Veeranki, V.D. (2014) Structural Stability and Unfolding Properties of Cutinases from Thermobifida fusca. Applied Biochemistry and Biotechnology, 174, 803-819. http://dx.doi.org/10.1007/s12010-014-1037-5
|
[19]
|
Eyring, H. and Stearn, A.E. (1939) The Application of the Theory of Absolute Reaction Rates to Proteins. Chemical Review, 24, 253-270. http://dx.doi.org/10.1155/S1110724301000249
|
[20]
|
Kapat, A. and Panda, T. (1997) pH and Thermal Stability Studies of Chitinase from Trichoderma harzianum: A Thermodynamic Consideration. Bioprocess Engineering, 16, 269-272. http://dx.doi.org/10.1007/s004490050321
|
[21]
|
Petersen, S.B., Fojan, P., Petersen, E.I. and Petersen, M. (2001) The Thermal Stability of the Fusarium solani pisi Cutinase as a Function of pH. Journal of Biomedicine and Biotechnology, 1, 62-69. http://dx.doi.org/10.1155/S1110724301000249
|
[22]
|
Relkin, P. (1996) Thermal Unfolding of β-Lactoglobulin, α-Lactalbumin, and Bovine Serum Albumin: A Thermodynamic Approach. International Journal of Food Sciences and Nutrition, 36, 556-601.
|
[23]
|
Daniel, R.M. (1996) The Upper Limits of Enzyme Thermal Stability. Enzyme and Microbial Technology, 19, 74-79. http://dx.doi.org/10.1016/0141-0229(95)00174-3
|
[24]
|
Eisenberg, H., Mevarech, M. and Zaccai, G. (1992) Biochemical, Structural, and Molecular Genetic Aspects of Halophilism. Advances in Protein Chemistry, 43, 1-62. http://dx.doi.org/10.1016/S0065-3233(08)60553-7
|
[25]
|
Gohel, V. and Naseby, D.C. (2007) Thermalstabilization of Chitinolytic Enzymes of Pantoea dispersa. Biochemical Engineering Journal, 35, 150-157. http://dx.doi.org/10.1016/j.bej.2007.01.009
|
[26]
|
D’Amico, S., Marx, J.C., Gerday, C. and Feller, G. (2003) Activity-Stability Relationships in Extremophilic Enzymes. Journal of Molecular Biology, 278, 7891-7896.
|
[27]
|
Ternstrom, T., Svendsen, A., Akke, M. and Adlercreutz, P. (2005) Unfolding and Inactivation of Cutinases by AOT and Guanidine Hydrochloride. Biochimica et Biophysica Acta (BBA), Proteins and Proteomics, 1748, 74-83.
|
[28]
|
Loladze, V.V., Ibarra-Molero, B., Sanchez-Ruiz, J.M. and Makhatadze, G.I. (1999) Engineering a Thermostable Protein via Optimization of Charge-Charge Interactions on the Protein Surface. Biochemistry, 38, 16419-16423. http://dx.doi.org/10.1021/bi992271w
|
[29]
|
Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R. and Gaillardin, C. (2002) Hyperthermostabilization of Bacillus licheniformis α-Amylase and Modulation of Its Stability over a 50?C Temperature Range. Protein Engineering, Design and Selection, 16, 287-293. http://dx.doi.org/10.1093/proeng/gzg032
|
[30]
|
Gummadi, S.N. (2003) What Is the Role of Thermodynamics on Protein Stability? Biotechnology and Bioprocess Engineering, 8, 9-18. http://dx.doi.org/10.1007/BF02932892
|
[31]
|
Foster, R.L. (1980) Modification of Enzyme Activity. Croom Helm, London.
|
[32]
|
Voordouw, G., Milo, C. and Roche, R.S. (1976) Role of Bound Calcium Ions in Thermostable, Proteolytic Enzymes. Separation of Intrinsic and Calcium Ion Contributions to the Kinetic Thermal Stability. Biochemistry, 15, 3716-3724. http://dx.doi.org/10.1021/bi00662a012
|