An Application of the Taguchi Method (Robust Design) to Environmental Engineering: Evaluating Advanced Oxidative Processes in Polyester-Resin Wastewater Treatment


This paper presents the Taguchi Method, a statistical design modelling for experiments applied in environmental engineering. This method was applied to optimize the treatment conditions of polyester-resin effluent by means of Advanced Oxidative Processes (AOPs) using chemical oxygen demand (COD) as response parameter. The influence of each independent parameter including respective interactions was evaluated by Taguchi Method, which allowed determining the most statistically significant variables and conditions to best fit the process. Results showed that Taguchi Method is a very useful tool for environmental engineering field and possible simplifications of analysis and calculations through commercially available software.

Share and Cite:

Silva, M. , Carneiro, L. , Silva, J. , dos Santos Oliveira, I. , Filho, H. and de Oliveira Almeida, C. (2014) An Application of the Taguchi Method (Robust Design) to Environmental Engineering: Evaluating Advanced Oxidative Processes in Polyester-Resin Wastewater Treatment. American Journal of Analytical Chemistry, 5, 828-837. doi: 10.4236/ajac.2014.513092.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Padke, M.S. (1989) Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs.
[2] Dawson, E.A. and Barnes, P.A. (1992) A New Approach to the Statistical Optimization of Catalyst Preparation. Applied Catalysis A: General, 90, 217-231.
[3] Robin, A., Alves de Souza, K., Rosa, J.L. and Silva, M.B. (2002) Electrodeposition of Copper as a Route for Tantalum Drawing. Surface Engineering, 18, 120-125.
[4] Rosa, J.L., Robina, A., Silva, M.B., Baldana, C.A. and Peres, M.P. (2008) Electrodeposition of Copper on Titanium Wires: Taguchi Experimental Design Approach. Journal of Materials Processing Technology, 209, 1181-1188.
[5] Zang, C., Friswell, M.I. and Mottershead, J.E. (2005) A Review of Robust Optimal Design and Its Application in Dynamics. Computers & Structures, 83, 315-326.
[6] Caffaro-Filho, R.A., Morita, D.M., Wagner, R. and Durrant, L.R. (2009) Toxicity-Directed Approach of Polyester Manufacturing Industry Wastewater Provides Useful Information for Conducting Treatability Studies. Journal of Hazards Material, 163, 92-97.
[7] Canizares, P., Pérez, A., Camarillo, R. and Llanos, J. (2007) Removal of Polyether-Polyols by Means of Ultrafiltration. Desalination, 206, 594-601.
[8] Oguz, E., Keskinler, B., Celik, C. and Celik, Z. (2006) Determination of the Optimum Conditions in the Removal of Bomaplex Red CR-L Dye from the Textile Wastewater Using O3, H2O2, HCO3 and PAC. Journal of Hazardous Materials, 131, 66-72.
[9] Meric, S., Kabdalia, I., Tunay, O. and Orhon, D. (1999) Treatability of Strong Wastewaters from Polyesters Manufacturing Industry. Water Science and Technology, 39, 1-7.
[10] Parra, S.P.C. (2001) Coupling of Photocatalytic and Biological Process as a Contribution to the Detoxification of Water: Catalytic and Technological Aspects. Ph.D. Thesis, ècole Polytechnique Fédérale de Lausanne.
[11] Legrini, O., Oliveros, E. and Braun, A.M. (1993) Photochemical Process for Water-Treatment. Chemical Reviews, 93, 671-698.
[12] Gunten, U., Huber, M.M., Canonica, S. and Park, G.Y. (2003) Oxidations of Farmaceuticals during Ozonation an Advanced Oxidation Processes. Environmental Science & Technology, 37, 1016-1024.
[13] Chiron, S., Alba, A.F., Rodrigues, A. and Calvo, E.G. (2000) Pesticide Chemical Oxidation: State-of-the-Art. Water Resource, 2, 366-377.
[14] Silva, M.B., Almeida, C.R.O., Chaves, F.J.M., Izário Filho, H.J. and Mattos, J.R.A. (2003) Treatment of Strong Wastewater Using Advanced Oxidation Process (AOP) and Biological Process (BP) to Reduction of Chemical Oxygen Demand (COD) in Samples from Polyester Manufacturing Industry. Conferencia Científica Internacional Medio Ambiente Siglo XXI (MAS III), Santa Clara.
[15] Guimaraes, O.L.C. and Silva, M.B. (2007) Hybrid Neural Model for Decoloration by UV/H2O2 Involving Process Variables and Structural Parameters Characteristics to Azo Dyes. Chemical Engineering and Processing, 46, 45-51.
[16] Nogueira, R.F.P., Trovó, A.G., Silva, M.R.A., Villa, R.D. and Oliveira, M.C.O. (2007) Fundamentos e aplicacoes ambientais dos processos Fenton e foto-Fenton. Química Nova, 30, 400-408.
[17] Freire, R.S., Pelegrini, R., Kubota, L.T. and Durán, N. (2000) Novas tendências para o tratamento de resíduos industriais contendo espécies organocloradas. Química Nova, 23, 504-511.
[18] Guzzella, L., Feretti, D. and Monarca, S. (2002) Advanced Oxidation and Adsorption Technologies for Organic Micropollutant Removal from Lake Water Used as Drinking-Water Supply. Water Research, 36, 4307-4318.
[19] Peixoto, A.L.C. and Izário Filho, H.J. (2010) Statistical Evaluation of Mature Landfill Leachate Treatment by Homogeneous Catalytic Ozonation. Brazilian Journal of Chemical Engineering, 27, 531-534.
[20] Peixoto, A.L.C., Silva, M.B. and Izário Filho, H.J. (2009) Leachate Treatment Process at a Municipal Stabilized Landfill by Catalytic Ozonation: An Exploratory Study from Taguchi Orthogonal Array. Brazilian Journal of Chemical Engineering, 26, 481-492.
[21] Salazar, R.F.S. and Izário Filho, H.J. (2010) Aplicacao de processo oxidativo avancado (POA) como pré-tratamento de efluente de laticínio para posterior tratamento biológico. Analytica (Sao Paulo), 45, 60-61.
[22] Samanamud, G.R.L., Lourea, C.C.A., Souza, A.L, Salazar, R.F.S., Oliveira, I.S., Silva, M.B. and Izário Filho, H.J. (2012) Heterogeneous Photocatalytic Degradation of Dairy Wastewater Using Immobilized ZnO. ISRN Chemical Engineering, 2012, Article ID: 275371.
[23] Fahami, Nishijima, W. and Okada, M. (2003) Improvement of DOC Removal by Multi-Stage AOP-Biological Treatment. Chemosphere, 50, 1043-1048.
[24] Barrado, E., Vega, M., Grande, P. and Del Valle, J.L. (1996) Optimization of a Purification Method for Metal-Containing Wastewater by Use of a Taguchi Experimental Design. Water Resource, 30, 2309-2314.
[25] Taguchi, G. and Konishi, S. (1987) Taguchi Methods Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering. American Supplier Institute, Dearborn, Michigan.
[26] Lizama, C., Freer, J., Baeza, J. and Mansilla, H.D. (2002) Optimized Photodegradation of Reactive Blue 19 on TiO2 and ZnO Suspensions. Catalysis Today, 76, 235-246.
[27] Rodríguez, M., Abderrazik, N.B., Contreras, S., Chamarro, E., Gimenez, J. and Esplugas, S. (2002) Iron(III) Photoxidation of Organic Compounds in Aqueous Solutions. Applied Catalysis B: Environmental, 37, 131-137.
[28] Silva, M.B. (1996) Estudo das Condicoes de Preparacao, Caracterizacao e Reatividade de Catalisadores de Prata Suportada em Alumina. Tese de Doutorado, Faculdade de Engenharia Química/Universidade Estadual de Campinas— UNICAMP.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.