Hydrothermal Synthesis and Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Nanowires

DOI: 10.4236/ojpc.2011.11002   PDF   HTML     5,345 Downloads   11,364 Views   Citations


We report the synthesis of oriented single crystalline Mn doped ZnO nanowires through a hydrothermal method. Structural characterizations using X-ray diffraction and transmission electron microscopy revealed that the Mn was doped into the lattice structure, forming solid solution. The Mn doped ZnO nanowires possess wurtzite structure with a c-axis growth orientation. The physical properties of the nanowires were investigated. Mn doped ZnO nanowires were found to be ferromagnetic with Curie temperature of about 30 K. A deep level emission band at about 566 nm was observed at room temperature.

Share and Cite:

X. Zhang, J. Dai and H. Ong, "Hydrothermal Synthesis and Properties of Diluted Magnetic Semiconductor Zn1-xMnxO Nanowires," Open Journal of Physical Chemistry, Vol. 1 No. 1, 2011, pp. 6-10. doi: 10.4236/ojpc.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Iijima, Nature Vol. 354, No. 6348, 1991, pp. 56-58.
[2] M. H. Devoret, D. Esteve, and C. Urbina, Nature Vol. 360, No. 6404, 1992, pp. 547-553.
[3] H. J. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature Vol. 375, No. 6534, 1995, pp. 769-772.
[4] A. P. Alivisatos, Science Vol. 271, No. 5251, 1996, pp. 933-937.
[5] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science Vol. 292, 2001, pp. 1897-1899.
[6] A. M. Morales and C. M. Lieber, Science Vol. 279, No. 5348, 1998, pp. 208-211.
[7] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. Vol. 73, No. 26, 1998, pp. 3902- 3904.
[8] D. C. Look, Mater. Sci. Eng. B Vol. 80, No. 1-3, 2001, pp. 383-387.
[9] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. Vol. 72, No. 25, 1998, pp. 3270-3272.
[10] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. ferrand, Science Vol. 287, No. 5455, 2000, pp. 1019-1022.
[11] T. Dietl, Semicond. Sci. Technol. Vol. 17, No. 4, 2002, pp. 377.
[12] Y. W. Heo, M. P. Lvill, K. Ip, D. P. Norton, S. J. Pearton, J. G. Kelly, R. Rairigh, A. F. Hebard, and T. Steiner, Appl. Phys. Lett. Vol. 84, No.13, 2004, pp. 2292-2294.
[13] W. Prellier, A. Foucheta, and B. Mercey, J. Phys. C Vol. 15, No. 37, 2003, pp. R1583-R1601.
[14] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, Y. H. Jeong, and K. W. Rhie, Appl. Phys. Lett. Vol. 81, No. 22, 2002, pp. 2412-2414.
[15] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Nature Mater. Vol. 2, 2003, pp. 673-677.
[16] D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, and R. G. Wilson, Appl. Phys. Lett., Vol. 82, No. 26, 2003, pp. 239-241.
[17] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. Vol. 78, No. 7, 2001, pp. 958-960.
[18] X. M. Cheng, and C. L. Chien, J. Appl. Phys. Vol. 93, No. 10, 2003, pp. 7876-7878.
[19] C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, and D. Schwen, Appl. Phys. Lett. Vol. 84, No. 5, 2004, pp. 783-785.
[20] M. H. Huang, Y. W. Henning Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. Vol. 13, No. 2, 2001, pp. 113-116.
[21] Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. Vol. 13, No. 1, 2003, pp. 9-24.
[22] V. A. L. Roy, A. B. Djuri?i?, H. Liu, X. X. Zhang, Y. H. Leung, M. H. Xie, J. Gao, H. F. Lui, and C. Surya, Appl. Phys. Lett. Vol. 84, No. 5, 2004, pp. 756-758.
[23] Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, L. Li, C. P. Chen, R. M. Wang, J. Xu, D. P. Yu, Appl. Phys. Lett. Vol. 83, No. 19, 2003, pp. 2292-2294.
[24] L. Vayssieres, K. Keis, S. –E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B Vol. 105, No. 17, 2001, pp. 3350-3352.
[25] L. Vayssieres, K. Keis, A. Hagfeldt, and S. –E. Lindquist, Chem. Mater. Vol. 13, No. 12, 2001, pp. 4395-4398.
[26] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, Angew. Chem. Int. Ed. Vol. 42, No. 26, 2003, pp. 3031-3034.
[27] B. Liu, and H. C. Zeng, J. Am. Chem. Soc. Vol. 125, No. 15, 2003, pp. 4430-4431.
[28] S. W. jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, S. Cho, Appl. Phys. Lett. Vol. 80, No. 24, 2002, pp 4561- 563.
[29] V. A. L. Roy, A. B. Djurisic, H. Liu, X. X. Zhang, Y. H. leung, M. H. Xie, J. Gao, H. F. Liu, C. Surya, Appl. Phys. Lett. Vol. 84, No. 5, 2004, pp 756-758.
[30] B. D. Yao, L. Feng, C. Cheng, M. M. T. Loy, N. Wang, Appl. Phys. Lett. Vol. 96, No. 22, 2010, pp. 223105 (1-3).
[31] D. Dingle, Physics Review Letters, Vol. 23, No. 11, 1969, pp. 579-581.
[32] B. Q. Cao, F. Q. Sun, W. P. Cai, Electrochem. Solid-State Letters. Vol. 8, No. 9, 2005, pp. 237-G240.
[33] Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett. Vol. 76, No. 15, 2000, pp. 2011-2013.
[34] A. L. He, X. Q. Wang, Y. Q. Fan, and Y. P. Feng, J. Appl. Phys. Vol. 108, No. 8, 2010, pp. 084308(1-5).

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.