[1]
|
Viso, A., de la Pradilla, R.F., García, A. and Flores, A. (2005) α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chemical Reviews, 105, 3167-3196. http://dx.doi.org/10.1021/cr0406561
|
[2]
|
Viso, A., de la Pradilla, R.F., Tortosa, M., García, A. and Flores, A. (2011) Update 1 of: α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chemical Reviews, 111, PR1-PR42. http://dx.doi.org/10.1021/cr100127y
|
[3]
|
Qian, H., Fu, Z., Huang, W., Zhang, H., Zhou, J., Ge, L., Lin, R., Lin, H. and Hu, X. (2010) Synthesis and Preliminary Biological Evaluation of Capsaicin Derivatives as Potential Analgesic Drugs. Journal of Medicinal Chemistry, 6, 205-210.
|
[4]
|
Moura, S. and Pinto, E. (2010) Synthesis of Cyclic Guanidine Intermediates of Anatoxin-a(s) in Both Racemic and Enantiomerically Pure Forms. SYNLETT, 967-969. http://dx.doi.org/10.1055/s-0029-1219559
|
[5]
|
Ellsworth, B.A., Wang, Y., Zhu, Y., Pendri, A., Gerritz, S.W., Sun, C., Carlson, K.E., Kang, L., Baska, R.A., Yang, Y., Huang, Q., Burford, N.I., Cullen, M.J., Johnghar, S., Behnia, K., Pelleymounter, M.A., Washburn, W.N. and Ewing, W.R. (2007) Discovery of Pyrazine Carboxamide CB1 Antagonists: The Introduction of a Hydroxyl Group Improves the Pharmaceutical Properties and in Vivo Efficacy of the Series. Bioorganic Medicinal Chemistry Letters, 17, 3978-3982. http://dx.doi.org/10.1016/j.bmcl.2007.04.087
|
[6]
|
Bostrom, J., Berggren, K., Elebring, T., Greasley, P.J. and Wilstermann, M. (2007) Scaffold Hopping, Synthesis and Structure-Activity Relationships of 5,6-Diaryl-Pyrazine-2-Amide Derivatives: A Novel Series of CB1 Receptor Antagonists. Bioorganic Medicinal Chemistry Letters, 15, 4077-4084. http://dx.doi.org/10.1016/j.bmc.2007.03.075
|
[7]
|
Adediran, S.A., Cabaret, D., Flavell, R.R., Sammons, J.A., Wakselman, M. and Pratt, R.F. (2006) Synthesis and β-Lactamase Reactivity of α-Substituted Phenaceturates. Bioorganic Medicinal Chemistry Letters, 14, 7023-7033. http://dx.doi.org/10.1016/j.bmc.2006.06.023
|
[8]
|
Huang, Z., Hwang, P. Watson, D.S., Cao, L. and Szoka Jr., F.C. (2009) Tris-Nitrilotriacetic Acids of Subnanomolar Affinity toward Hexahistidine Tagged Molecules. Bioconjugate Chemistry, 20, 1667-1672. http://dx.doi.org/10.1021/bc900309n
|
[9]
|
Zangl, A., Kluefers, P., Schaniel, D. and Woike, T. (2009) Photoinduced Linkage Isomerism of {RuNO}6 Complexes with Bioligands and Related Chelators. Dalton Transactions, 1034-1045. http://dx.doi.org/10.1039/b812246f
|
[10]
|
Luts, T., Suprun, W., Hofmann, D., Klepel, O. and Papp, H. (2007) Epoxidation of Olefins Catalyzed by Novel Mn(III) and Mo(IV) Salen Complexes Immobilized on Mesoporous Silica Gel. Journal of Molecular Catalysis A: Chemical, 261, 16-23. http://dx.doi.org/10.1016/j.molcata.2006.07.035
|
[11]
|
Liu, Y., Pak, J.K., Schmutz, P., Bauwens, M., Mertens, J., Knight, H. and Alberto, R. (2006) Amino Acids Labeled with [99mTc(CO)3]+ and Recognized by the L-Type Amino Acid Transporter LAT1. Journal of the American Chemical Society, 128, 15996-15997. http://dx.doi.org/10.1021/ja066002m
|
[12]
|
Takashima, H., Hirai, C. and Tsukahara, K. (2005) Selective and Monofunctional Guanosine 5’-Monophosphate Binding by Chloro[3-(2,3-diaminopropionylamino)propionic Acid](Dimethyl Sulfoxide)platinum(II) Complex. Bulletin of the Chemical Society of Japan, 78, 1629-1634. http://dx.doi.org/10.1246/bcsj.78.1629
|
[13]
|
Rattat, D., Eraets, K., Cleynhens, B., Knight, H., Fonge, H. and Verbruggen, A. (2004) Comparison of Tridentate Ligands in Competition Experiments for Their Ability to Form a [99mTc(CO)3] Complex. Tetrahedron Letters, 45, 2531-2534. http://dx.doi.org/10.1016/j.tetlet.2004.02.006
|
[14]
|
Moura, S. and Pinto, E. (2010) Synthesis of Cyclic Guanidine Intermediates of Anatoxin-a(s) in both Racemic and Enantiomerically Pure Forms. Synlett, 2010, 967-969. http://dx.doi.org/10.1055/s-0029-1219559
|
[15]
|
Becerril, A., León-Romo, J.L., Avina, J., Castellanos, E. and Juaristi, E. (2002) Diastereoselective Alkylation of a Chiral 1,4-benzodiazepine-2,5-dione Containing the α-Phenethyl Group. Attempted Asymmetric Synthesis of α,β-diamino-propionic Acid. ARKIVOC, 2002, 4-14. http://dx.doi.org/10.3998/ark.5550190.0003.c02
|
[16]
|
Brown, E.G. and Turan, Y. (1995) Pyrimidine Metabolism and Secondary Product Formation; Biogenesis of Albizziine, 4-Hydroxyhomoarginine and 2,3-Diaminopropanoic Acid. Phytochemistry, 40, 763-771. http://dx.doi.org/10.1016/0031-9422(95)00317-Z
|
[17]
|
Fouques, D. and Landry, J. (1991) Study of the Conversion of Asparagine and Glutamine of Proteins into Diaminopropionic and Diaminobutyric Acids Using [Bis(trifluoroacetoxy)iodo]benzene Prior to Amino Acid Determination. Analyst, 116, 529-531. http://dx.doi.org/10.1039/an9911600529
|
[18]
|
Hellmann, H. and Haas, G. (1957) Acylaminomethylation of CH-Acidic Compounds; Syntheses of β-Aminocarboxylic Acids. Chemische Berichte, 90, 1357-1363. http://dx.doi.org/10.1002/cber.19570900733
|
[19]
|
Hellmann, H. (1957) Neuere Methoden der praparativen organischen Chemie II. 8. Amidomethylierungen. Angewand- te Chemie, 69, 463-471. http://dx.doi.org/10.1002/ange.19570691305
|
[20]
|
Oe, Y., Inoue, T., Kishimoto, H., Sasaki, M., Ohta, T. and Furukawa, I. (2012) Three-Component Coupling Catalyzed by Phosphine: Preparation of α-amino γ-Oxo Acid Derivatives. International Journal of Organic Chemistry, 2, 111-116.
|
[21]
|
Riddick, J.A. and Bunger, W.B. (1970) Organic Solvent. 3rd ed., Wiley-Interscience, New York.
|
[22]
|
Ross, J., Chen, W., Xu, L. and Xiao, J. (2001) Ligand Effects in Palladium-Catalyzed Allylic Alkylation in Ionic Liquids. Organometallics, 20, 138-142. http://dx.doi.org/10.1021/om000712y
|
[23]
|
Nair, V., Sreekanth, A.R. and Vinod, A.U. (2001) Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2+2] Cycloaddition Leading to 2-Oxo-3-benzylidinesuccinates. Organic Letters, 3, 3495-3497. http://dx.doi.org/10.1021/ol016550z
|
[24]
|
Trost, B.M. and Dake, G.R. (1997) Nitrogen Pronucleophiles in the Phosphine-Catalyzed γ-Addition Reaction. The Journal of Organic Chemistry, 62, 5670-5671. http://dx.doi.org/10.1021/jo970848e
|
[25]
|
Rychnovsky, S.D. and Kim, J. (1994) Triphenylphosphine-Catalyzed Isomerizations of Enynes to (E,E,E)-Trienes: Phenol as a Cocatalyst. The Journal of Organic Chemistry, 59, 2659-2660. http://dx.doi.org/10.1021/jo00088a067
|
[26]
|
Xu, Z. and Lu, X. (1999) Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Substituted 2-Alkynoates or 2,3-alkenoates with Electron-Deficient Olefins and Imines. Tetrahedron Letters, 40, 549-552. http://dx.doi.org/10.1016/S0040-4039(98)02405-8
|
[27]
|
Zhang, C. and Lu, X. (1995) Phosphine-Catalyzed Cycloaddition of 2,3-Butadienoates or 2-Butynoates with Electron-Deficient Olefins. A Novel [3+2] Annulation Approach to Cyclopentenes. The Journal of Organic Chemistry, 60, 2906-2908. http://dx.doi.org/10.1021/jo00114a048
|
[28]
|
Xu, Z. and Lu, X. (1997) Phosphine-Catalyzed [3+2] Cycloaddition Reaction of Methyl 2,3-Butadienoate and N-Tosylimines. A Novel Approach to Nitrogen Heterocycles. Tetrahedron Letters, 38, 3461-3464. http://dx.doi.org/10.1016/S0040-4039(97)00656-4
|
[29]
|
Guo, C. and Lu, X. (1993) Rein-vestigation on the Catalytic Isomerization of Carbon-Carbon Triple Bonds. Journal of the Chemical Society, Perkin Transactions, 1993, 1921-1923. http://dx.doi.org/10.1039/p19930001921
|
[30]
|
Trost, B.M. and Li, C.J. (1994) Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. Journal of the American Chemical Society, 116, 10819-10820. http://dx.doi.org/10.1021/ja00102a071
|
[31]
|
Trost, B.M. and Kazmaier, U. (1992) Internal Redox Catalyzed by Triphenylphosphine. Journal of the American Chemical Society, 114, 7933-7935. http://dx.doi.org/10.1021/ja00046a062
|
[32]
|
Trost, B.M. and Dake, G.R. (1997) Nucleophilic α-Addition to Al-kynoates. A Synthesis of Dehydroamino Acids. Journal of the American Chemical Society, 119, 7595-7596. http://dx.doi.org/10.1021/ja971238z
|
[33]
|
Trost, B.M. and Li, C.J. (1994) Novel “Umpolung” in C-C Bond Formation Catalyzed by Triphenylphosphine. Journal of the American Chemical Society, 116, 3167-3168. http://dx.doi.org/10.1021/ja00086a074
|
[34]
|
Kuroda, H., Hanaki, E. and Kawakami, M. (1999) A Convenient Method for the Preparation of Furans by the Phosphine-Initiated Reactions of Enynes Bearing a Carbonyl Group. Tet-rahedron Letters, 40, 3753-3756. http://dx.doi.org/10.1016/S0040-4039(99)00601-2
|
[35]
|
Nozaki, K., Sato, N., Ikeda, K. annd Takaya, H. (1996) Synthesis of Highly Functionalized γ-Butyrolactones from Activated Carbonyl Compounds and Dimethyl Acetylenedicarboxylate. The Journal of Organic Chemistry, 61, 4516-4519. http://dx.doi.org/10.1021/jo951828k
|
[36]
|
Yavari, I. and Mosslemin, M.H. (1998) An Efficient One-Pot Synthesis of Dialkyl 2,5-dihydrofuran-2,3-dicarboxylates Mediated by Vinyltriphenylphosphonium Salt. Tetrahedron, 54, 9169-9174. http://dx.doi.org/10.1016/S0040-4020(98)00554-7
|
[37]
|
Yavari, I., Hekmat-Shoar, R. and Zonouzi, A. (1998) A New Efficient Rout to 4-Carboxymethylcoumarins Mediated by Vinyltriphenylphosphonium Salt. Tetrahedron Letters, 39, 2391-2392.
|
[38]
|
Yavari, I. and Baharfar, R. (1997) Vinylphosphonium Salt Mediated One-Pot Synthesis of Functionalized-3-(triphenyl- phosphoranylidene)butyrolactones. Tetrahedron Letters, 38, 4259-4262.
|
[39]
|
Caddick, S., Aboutayab, K., Jenkins, K. and West, R.I. (1996) Intramolecular Radical Substitution Reactions: A Novel Approach to Fused [1,2-a] Indoles. Journal of the Chemical Society, Perkin Transactions, 1996, 675-682. http://dx.doi.org/10.1039/p19960000675
|
[40]
|
Perrin, D.D. and Armarego, W.L.F. (1988) Purification of Laboratory Chemicals. 3rd Edition, Pergamon, Oxford.
|