An Efficient Synthesis of 2,3-Diaminoacid Derivatives Using Phosphine Catalyst

Abstract

Ethyl 2,3-diphthalimidoylpropanoate was effectively synthesized from ethyl propynoate with two equivalents of phthalimide catalyzed by triphenylphosphine in good yield. The choice of reaction media was important for selective synthesis of the desired 2,3-diaminocarboxylic acid derivatives. The reaction is considered to occur through a zwitterionic intermediate derived from the reaction of the α,β-unsaturated ester with triphenylphosphine.

Share and Cite:

Oe, Y. , Kishimoto, H. , Sugioka, N. , Harada, D. , Sato, Y. , Ohta, T. and Furukawa, I. (2014) An Efficient Synthesis of 2,3-Diaminoacid Derivatives Using Phosphine Catalyst. International Journal of Organic Chemistry, 4, 189-194. doi: 10.4236/ijoc.2014.43021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Viso, A., de la Pradilla, R.F., García, A. and Flores, A. (2005) α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chemical Reviews, 105, 3167-3196.
http://dx.doi.org/10.1021/cr0406561
[2] Viso, A., de la Pradilla, R.F., Tortosa, M., García, A. and Flores, A. (2011) Update 1 of: α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chemical Reviews, 111, PR1-PR42.
http://dx.doi.org/10.1021/cr100127y
[3] Qian, H., Fu, Z., Huang, W., Zhang, H., Zhou, J., Ge, L., Lin, R., Lin, H. and Hu, X. (2010) Synthesis and Preliminary Biological Evaluation of Capsaicin Derivatives as Potential Analgesic Drugs. Journal of Medicinal Chemistry, 6, 205-210.
[4] Moura, S. and Pinto, E. (2010) Synthesis of Cyclic Guanidine Intermediates of Anatoxin-a(s) in Both Racemic and Enantiomerically Pure Forms. SYNLETT, 967-969.
http://dx.doi.org/10.1055/s-0029-1219559
[5] Ellsworth, B.A., Wang, Y., Zhu, Y., Pendri, A., Gerritz, S.W., Sun, C., Carlson, K.E., Kang, L., Baska, R.A., Yang, Y., Huang, Q., Burford, N.I., Cullen, M.J., Johnghar, S., Behnia, K., Pelleymounter, M.A., Washburn, W.N. and Ewing, W.R. (2007) Discovery of Pyrazine Carboxamide CB1 Antagonists: The Introduction of a Hydroxyl Group Improves the Pharmaceutical Properties and in Vivo Efficacy of the Series. Bioorganic Medicinal Chemistry Letters, 17, 3978-3982.
http://dx.doi.org/10.1016/j.bmcl.2007.04.087
[6] Bostrom, J., Berggren, K., Elebring, T., Greasley, P.J. and Wilstermann, M. (2007) Scaffold Hopping, Synthesis and Structure-Activity Relationships of 5,6-Diaryl-Pyrazine-2-Amide Derivatives: A Novel Series of CB1 Receptor Antagonists. Bioorganic Medicinal Chemistry Letters, 15, 4077-4084.
http://dx.doi.org/10.1016/j.bmc.2007.03.075
[7] Adediran, S.A., Cabaret, D., Flavell, R.R., Sammons, J.A., Wakselman, M. and Pratt, R.F. (2006) Synthesis and β-Lactamase Reactivity of α-Substituted Phenaceturates. Bioorganic Medicinal Chemistry Letters, 14, 7023-7033.
http://dx.doi.org/10.1016/j.bmc.2006.06.023
[8] Huang, Z., Hwang, P. Watson, D.S., Cao, L. and Szoka Jr., F.C. (2009) Tris-Nitrilotriacetic Acids of Subnanomolar Affinity toward Hexahistidine Tagged Molecules. Bioconjugate Chemistry, 20, 1667-1672.
http://dx.doi.org/10.1021/bc900309n
[9] Zangl, A., Kluefers, P., Schaniel, D. and Woike, T. (2009) Photoinduced Linkage Isomerism of {RuNO}6 Complexes with Bioligands and Related Chelators. Dalton Transactions, 1034-1045.
http://dx.doi.org/10.1039/b812246f
[10] Luts, T., Suprun, W., Hofmann, D., Klepel, O. and Papp, H. (2007) Epoxidation of Olefins Catalyzed by Novel Mn(III) and Mo(IV) Salen Complexes Immobilized on Mesoporous Silica Gel. Journal of Molecular Catalysis A: Chemical, 261, 16-23.
http://dx.doi.org/10.1016/j.molcata.2006.07.035
[11] Liu, Y., Pak, J.K., Schmutz, P., Bauwens, M., Mertens, J., Knight, H. and Alberto, R. (2006) Amino Acids Labeled with [99mTc(CO)3]+ and Recognized by the L-Type Amino Acid Transporter LAT1. Journal of the American Chemical Society, 128, 15996-15997.
http://dx.doi.org/10.1021/ja066002m
[12] Takashima, H., Hirai, C. and Tsukahara, K. (2005) Selective and Monofunctional Guanosine 5’-Monophosphate Binding by Chloro[3-(2,3-diaminopropionylamino)propionic Acid](Dimethyl Sulfoxide)platinum(II) Complex. Bulletin of the Chemical Society of Japan, 78, 1629-1634.
http://dx.doi.org/10.1246/bcsj.78.1629
[13] Rattat, D., Eraets, K., Cleynhens, B., Knight, H., Fonge, H. and Verbruggen, A. (2004) Comparison of Tridentate Ligands in Competition Experiments for Their Ability to Form a [99mTc(CO)3] Complex. Tetrahedron Letters, 45, 2531-2534.
http://dx.doi.org/10.1016/j.tetlet.2004.02.006
[14] Moura, S. and Pinto, E. (2010) Synthesis of Cyclic Guanidine Intermediates of Anatoxin-a(s) in both Racemic and Enantiomerically Pure Forms. Synlett, 2010, 967-969.
http://dx.doi.org/10.1055/s-0029-1219559
[15] Becerril, A., León-Romo, J.L., Avina, J., Castellanos, E. and Juaristi, E. (2002) Diastereoselective Alkylation of a Chiral 1,4-benzodiazepine-2,5-dione Containing the α-Phenethyl Group. Attempted Asymmetric Synthesis of α,β-diamino-propionic Acid. ARKIVOC, 2002, 4-14.
http://dx.doi.org/10.3998/ark.5550190.0003.c02
[16] Brown, E.G. and Turan, Y. (1995) Pyrimidine Metabolism and Secondary Product Formation; Biogenesis of Albizziine, 4-Hydroxyhomoarginine and 2,3-Diaminopropanoic Acid. Phytochemistry, 40, 763-771.
http://dx.doi.org/10.1016/0031-9422(95)00317-Z
[17] Fouques, D. and Landry, J. (1991) Study of the Conversion of Asparagine and Glutamine of Proteins into Diaminopropionic and Diaminobutyric Acids Using [Bis(trifluoroacetoxy)iodo]benzene Prior to Amino Acid Determination. Analyst, 116, 529-531.
http://dx.doi.org/10.1039/an9911600529
[18] Hellmann, H. and Haas, G. (1957) Acylaminomethylation of CH-Acidic Compounds; Syntheses of β-Aminocarboxylic Acids. Chemische Berichte, 90, 1357-1363.
http://dx.doi.org/10.1002/cber.19570900733
[19] Hellmann, H. (1957) Neuere Methoden der praparativen organischen Chemie II. 8. Amidomethylierungen. Angewand- te Chemie, 69, 463-471.
http://dx.doi.org/10.1002/ange.19570691305
[20] Oe, Y., Inoue, T., Kishimoto, H., Sasaki, M., Ohta, T. and Furukawa, I. (2012) Three-Component Coupling Catalyzed by Phosphine: Preparation of α-amino γ-Oxo Acid Derivatives. International Journal of Organic Chemistry, 2, 111-116.
[21] Riddick, J.A. and Bunger, W.B. (1970) Organic Solvent. 3rd ed., Wiley-Interscience, New York.
[22] Ross, J., Chen, W., Xu, L. and Xiao, J. (2001) Ligand Effects in Palladium-Catalyzed Allylic Alkylation in Ionic Liquids. Organometallics, 20, 138-142.
http://dx.doi.org/10.1021/om000712y
[23] Nair, V., Sreekanth, A.R. and Vinod, A.U. (2001) Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2+2] Cycloaddition Leading to 2-Oxo-3-benzylidinesuccinates. Organic Letters, 3, 3495-3497.
http://dx.doi.org/10.1021/ol016550z
[24] Trost, B.M. and Dake, G.R. (1997) Nitrogen Pronucleophiles in the Phosphine-Catalyzed γ-Addition Reaction. The Journal of Organic Chemistry, 62, 5670-5671.
http://dx.doi.org/10.1021/jo970848e
[25] Rychnovsky, S.D. and Kim, J. (1994) Triphenylphosphine-Catalyzed Isomerizations of Enynes to (E,E,E)-Trienes: Phenol as a Cocatalyst. The Journal of Organic Chemistry, 59, 2659-2660.
http://dx.doi.org/10.1021/jo00088a067
[26] Xu, Z. and Lu, X. (1999) Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Substituted 2-Alkynoates or 2,3-alkenoates with Electron-Deficient Olefins and Imines. Tetrahedron Letters, 40, 549-552.
http://dx.doi.org/10.1016/S0040-4039(98)02405-8
[27] Zhang, C. and Lu, X. (1995) Phosphine-Catalyzed Cycloaddition of 2,3-Butadienoates or 2-Butynoates with Electron-Deficient Olefins. A Novel [3+2] Annulation Approach to Cyclopentenes. The Journal of Organic Chemistry, 60, 2906-2908.
http://dx.doi.org/10.1021/jo00114a048
[28] Xu, Z. and Lu, X. (1997) Phosphine-Catalyzed [3+2] Cycloaddition Reaction of Methyl 2,3-Butadienoate and N-Tosylimines. A Novel Approach to Nitrogen Heterocycles. Tetrahedron Letters, 38, 3461-3464.
http://dx.doi.org/10.1016/S0040-4039(97)00656-4
[29] Guo, C. and Lu, X. (1993) Rein-vestigation on the Catalytic Isomerization of Carbon-Carbon Triple Bonds. Journal of the Chemical Society, Perkin Transactions, 1993, 1921-1923.
http://dx.doi.org/10.1039/p19930001921
[30] Trost, B.M. and Li, C.J. (1994) Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. Journal of the American Chemical Society, 116, 10819-10820.
http://dx.doi.org/10.1021/ja00102a071
[31] Trost, B.M. and Kazmaier, U. (1992) Internal Redox Catalyzed by Triphenylphosphine. Journal of the American Chemical Society, 114, 7933-7935.
http://dx.doi.org/10.1021/ja00046a062
[32] Trost, B.M. and Dake, G.R. (1997) Nucleophilic α-Addition to Al-kynoates. A Synthesis of Dehydroamino Acids. Journal of the American Chemical Society, 119, 7595-7596.
http://dx.doi.org/10.1021/ja971238z
[33] Trost, B.M. and Li, C.J. (1994) Novel “Umpolung” in C-C Bond Formation Catalyzed by Triphenylphosphine. Journal of the American Chemical Society, 116, 3167-3168.
http://dx.doi.org/10.1021/ja00086a074
[34] Kuroda, H., Hanaki, E. and Kawakami, M. (1999) A Convenient Method for the Preparation of Furans by the Phosphine-Initiated Reactions of Enynes Bearing a Carbonyl Group. Tet-rahedron Letters, 40, 3753-3756.
http://dx.doi.org/10.1016/S0040-4039(99)00601-2
[35] Nozaki, K., Sato, N., Ikeda, K. annd Takaya, H. (1996) Synthesis of Highly Functionalized γ-Butyrolactones from Activated Carbonyl Compounds and Dimethyl Acetylenedicarboxylate. The Journal of Organic Chemistry, 61, 4516-4519.
http://dx.doi.org/10.1021/jo951828k
[36] Yavari, I. and Mosslemin, M.H. (1998) An Efficient One-Pot Synthesis of Dialkyl 2,5-dihydrofuran-2,3-dicarboxylates Mediated by Vinyltriphenylphosphonium Salt. Tetrahedron, 54, 9169-9174.
http://dx.doi.org/10.1016/S0040-4020(98)00554-7
[37] Yavari, I., Hekmat-Shoar, R. and Zonouzi, A. (1998) A New Efficient Rout to 4-Carboxymethylcoumarins Mediated by Vinyltriphenylphosphonium Salt. Tetrahedron Letters, 39, 2391-2392.
[38] Yavari, I. and Baharfar, R. (1997) Vinylphosphonium Salt Mediated One-Pot Synthesis of Functionalized-3-(triphenyl- phosphoranylidene)butyrolactones. Tetrahedron Letters, 38, 4259-4262.
[39] Caddick, S., Aboutayab, K., Jenkins, K. and West, R.I. (1996) Intramolecular Radical Substitution Reactions: A Novel Approach to Fused [1,2-a] Indoles. Journal of the Chemical Society, Perkin Transactions, 1996, 675-682.
http://dx.doi.org/10.1039/p19960000675
[40] Perrin, D.D. and Armarego, W.L.F. (1988) Purification of Laboratory Chemicals. 3rd Edition, Pergamon, Oxford.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.