Spatial Meaning of Quantum Mechanics

Abstract

We provide theoretical evidence for that remains far from clear in Copenhagen interpretation, and then try to make it further complete. Uncertainty relations are proved to be the intrinsic attributes of the position-momentum space and the time-energy space. A theoretical evidence for the probabilistic interpretation is given. Different meanings of the wave-particle duality for the photons and for the electron are discussed.

Share and Cite:

Feng, Y. (2014) Spatial Meaning of Quantum Mechanics. Natural Science, 6, 1149-1158. doi: 10.4236/ns.2014.614103.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Whitaker, A. (1996) Einstein, Bohr and the Quantum Dilemma. Cambridge University, Cambridge.
[2] Bohr, N. (1935) Can Quantum-Mechanics Description of Physical Reality Be Considered Complete? Physical Review, 48, 696-702.
http://dx.doi.org/10.1103/PhysRev.48.696
[3] Hey, T. and Walters, P. (2003) The New Quantum Universe. Cambridge University, Cambridge, 165.
[4] Plotnitsky, A. (2010) Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum Theoretical Thinking. Springer, New York, 114.
http://dx.doi.org/10.1007/978-0-387-85334-5
[5] Bell, J. S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195.
[6] Aspec, A., Granger, P. and Roger, G. (1981) Experimental Tests of Realistic Local Theories via Bell’s Theorem. Physical Review Letters, 47, 460-463.
http://dx.doi.org/10.1103/PhysRevLett.47.460
[7] Aspect, A. (1999) Bell’s Inequality Test: More Ideal than Ever. Nature, 398, 189-190.
http://dx.doi.org/10.1038/18296
[8] Torgerson, J.R., Branning, N., Monken, C.H. and Mondel, L. (1995) Experimental Demonstration of the Violation of Local Realism without Bell Inequalities. Physics Letters A, 204, 323-328.
http://dx.doi.org/10.1016/0375-9601(95)00486-M
[9] Pan J-W., Bouwmeester, D., Daniell, M., Weinfurter, H., and Zeillinger, A. (2000) Experi-mental Test of Quantum Nonlocality in Three-photon Greenberger-Horne-Zeilinger Entan-glement. Nature, 403, 515-519.
http://dx.doi.org/10.1038/35000514
[10] Born, M. (1954) The Statistical Interpretation of Quantum Mechanics. Nobel Lecture.
[11] Everett, H. (1957) “Relative State” Formation of Quantum Mechanics. Reviews of Modern Physics, 29, 454.
[12] Bohm, D. and Bub, J. (1966) A Proposed Solution of the Measurement Problem in Quantum Mechanics by a Hidden Variable Theory. Reviews of Modern Physics, 38, 453.
http://dx.doi.org/10.1103/RevModPhys.38.453
[13] Omnès, R. (1992) Consistent Interpretations of Quantum Mechanics. Reviews of Modern Physics, 64, 339.
http://dx.doi.org/10.1103/RevModPhys.64.339
[14] Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715.
http://dx.doi.org/10.1103/RevModPhys.75.715
[15] Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777.
http://dx.doi.org/10.1103/PhysRev.47.777
[16] Schrödinger, E. (1983) The Present Situation in Quantum Mechanics. In: Wheeler, J.A. and Zurek, W.H., Eds., Quantum Theory and Measurement, Princeton University, New Jersey, 152.
[17] Dirac, P.A. (1958) The Principle of Quantum Mechanics. 4th Edition, Clarendon, Oxford, 227-235.
[18] Kittel, C. (1996) Introduction to Solid State Physics. 7th Edition, John Wiley & Sons, New York, 97, 450.
[19] Schrödinger, E. (1933) The Fundamental Idea of Wave Mechanics. Nobel Lecture, 12 December 1933.
[20] Buks, E., Schuster, R., Heiblum, M., Mahalu, D. and Umansky, V. (1998) Dephasing in Electron Interference by A “Which-Path” Detector. Nature, 391, 871-874.
http://dx.doi.org/10.1038/36057
[21] Chen, S.S., et al. (2000) Lecture on Differential Geometry. World Scientific, Beijing, 14, 227.
[22] Einstein, A. (1970) The Meaning of Relativity. 5th Edition, Princeton University, New Jersey, 35.
[23] Feynman, R.P., Leighton, R.B. and Sands, M.L. (2004) Lecture on Physics, Vol. 1. Pearson Education Asia Limited and Beijing World, Beijing.
[24] Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 31-32, 54.
[25] Amstrong, M.A. (1983) Basic Topology. Springer, New York, 39.
http://dx.doi.org/10.1007/978-1-4757-1793-8
[26] Kubo, R. (1966) The Fluctuation-Dissipation Theorem. Reports on Progress in Physics, 29, 255-284.
http://dx.doi.org/10.1088/0034-4885/29/1/306
[27] Müller-Kirsten, H.W. (2006) Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. World Scientific, New Jersey, 84.
http://dx.doi.org/10.1142/6050
[28] Born, M. and Wolf, E. (1980) Principles of Optics. 6th Edition, Pergamon, Beijing, 81, 375-386.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.