Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors

Abstract

Instrumented towers are being constructed to characterize vertical wind profiles in order to improve the understanding and characterization of a desired environment up to 100 m. The site being measured is at a height of 2500 m over sea level, in one side of Sierra Madre Oriental, which crosses Mexico from North to South. As the site has no energy, it was powered by a photovoltaic system. Power consumption of two sets of sensors fixed at the tower was evaluated. The first sensor set consisted of a pulsed anemometer and a RH sensor having a 0 - 10 V output; these sensors used cables for transmitting the output signals. Three cup anemometers fixed at 25, 35 and 45 m high measured wind speed. Wireless sensors in the second set, requires of a power consumption and battery life study. Solar cells energized the sensors, becoming the installation and operation easier. The datalogger that acquired the RH and T measurements encountered an 11% voltage loss throughout the cable; cup anemometer measurements did not show variations due to its pulsed signals. Wireless sensors drew less energy from the PV system, resulting in battery overcharge. A dump regulator turned-on a 200 W lamp during the night when the battery voltage reached 14 V; the lamp was turned-off when the battery voltage felt beneath 11.5 V. Considering the high wind available, wireless sensors batteries were charged by small wind turbines combined with 5 W solar panels.

Share and Cite:

Hahn, F. , Pablo, M. and Reyes, J. (2014) Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors. Energy and Power Engineering, 6, 213-221. doi: 10.4236/epe.2014.69019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] American Wind Energy Association (AWEA) (2006) Wind Power Outlook 2006.
http://www.awea.org/pubs/documents/Outlook_2006.pdf
[2] USA Environmental Protection Agency (EPA) (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications. EPA-454/R-99-005.
[3] WRIGHT (2012) Uranium Study: Air Quality Monitoring Report. DEQ/DMME Contract No. EP881027. Wright Environmental Services Inc., 1-69.
[4] de Noord, M., Curvers, A., Eecen, P., Antoniou, I., J?rgensen, H.E., Pedersen, T.F., Bradley, S., von Hünerbein, S., Kindler, D., Mellinghoff, H. and Emeis, S. (2005) WISE Wind Energy SODAR Evaluation Final Report. EU Project NNE5-2001-297, ECN-C--05-044, 1-95.
[5] Antoniou, I., J?rgensen, H.E., von Hünerbein, S., Bradley, S.G., Kindler, D., Warmbier, G. and de Noord, M. (2004) The Profiler Inter-Comparison Experiment (PIE). European Wind Energy Conference (EWEC), London, 22-25 November 2004.
[6] Suriyachai, P., Roedig, U. and Scott, A. (2012) A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 14, 240-264.
http://dx.doi.org/10.1109/SURV.2011.020211.00036
[7] Klaib, A.R., Shubair, R.M., Al-Qutayri, M.A. and Ng, J.W.P. (2011) An Overview of Localization Techniques for Wireless Sensor Networks. International Conference on Innovations in Information Technology, Abu Dhabi, 25-27 April 2011, 167-172.
[8] Crossbow (2012) Wireless Measurement System: MICAz. MICAz Data Sheet.
[9] Sudevalyam, S. and Kulkarni, P. (2011) Energy Harvesting Sensor Nodes: Survey and Implication. IEEE Communications Surveys and Tutorials, 13, 443-461.
http://dx.doi.org/10.1109/SURV.2011.060710.00094
[10] Devabhaktuni, V., Alam, M., Depuru, S.S.,Green, R. C.Nims, D., and Near, C. (2013) Solar energy:Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564.
http://dx.doi.org/10.1016/j.rser.2012.11.024
[11] Bates, J., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000) Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ionics, 135, 33-45.
http://dx.doi.org/10.1016/S0167-2738(00)00327-1
[12] Simjee, F. and Chou, P.H. (2006) Everlast: Long-Life, Supercapacitor-Operated Wireless Sensor Node. Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, 4-6 October 2006, 197-202.
[13] Holloday, J.D., Jones, E.O., Phelps, M. and Hu, J. (2002) Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources, 108, 21-27.
http://dx.doi.org/10.1016/S0378-7753(01)01011-4
[14] Schaevitz, S.B., Franz, A.J., Jensen, K.F. and Schmidt, M.A. (2001) A Combustion-Based MEMS Thermoelectric Power Generator. 11th International Conference on Solid-State Sensors and Actuators, Munich, 10-14 June 2001, 30- 33.
[15] Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F. and Schmidt, M.A. (2003) A Thermophotovoltaic Micro-Generator for Portable Power Applications. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, 714-717.
[16] Randall, J.F. (2003) On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
[17] Corke, P., Valencia, P., Sikka, P., Wark, T. and Overs, L. (2007) Long-Duration Solar-Powered Wireless Sensor Networks. 4th Workshop on Embedded Networked Sensors, Cork.
[18] Yang, B. and Sun, D. (2013) Testing, Inspecting and Monitoring Technologies for Wind Turbine Blades: A Survey. Renewable and Sustainable Energy Reviews, 22, 515-526.
http://dx.doi.org/10.1016/j.rser.2012.12.056
[19] Lynch, J.P. and Loh, K.J. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38, 91-130.
http://dx.doi.org/10.1177/0583102406061499
[20] Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) Localized Structural Health Monitoring Using Energy-Efficient Wireless Sensor Networks. IEEE Sensors Journal, 9, 1596-1604.
http://dx.doi.org/10.1109/JSEN.2009.2019318
[21] Hyers, R., McGowan, J., Sullivan, K., Manwell, J. and Syrett, B. (2006) Condition Monitoring and Prognosis of Utility Scale Wind Turbines. Energy Materials, 1, 187-203.
[22] Ishengoma, F. (2014) A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype Using ECHERP. International Journal of Computer Science and Network Solutions, 2, 24-36.
[23] Laurier, S. (2007) Experimental Analysis of Photovoltaic Energy Scavengers for Sensor Nodes. M.Sc. Thesis, Computer Engineering and Networks Laboratory, University of Ghent, Belgium.
[24] Han, S., Kang, Y., Park, K. and Jang, M. (2007) Design of Environment Monitoring System for Aquaculture Farms. 2007 Frontiers in the Convergence of Bioscience and Information Technologies, The Jeju Island, 11-13 October 2007, 889- 893.
[25] Shifeng, Y., Jing, K. and Jimin, Z. (2007) Wireless Monitoring System Foraquaculture Environment. IEEE International Workshop on RF Integration Technology, Singapore, 9-11 December 2007, 274-277.
[26] Lu, Y.L., Lin, C.Y. and Tsai, W.S. (2012) Application of Solar Wireless Sensor Network to Monitor Water-Quality in Cage Aquaculture Zone in the Inner Sea at Penghu. AFITA/WCCA 2012 Conference, Taiwan, 3-6 September 2012.
[27] Campbell Scientific (2009) Model 014A Met One Wind Speed Sensor Instruction Manual. Campbell Scientific Inc., Utah.
[28] Omni Instruments (2009) Humidity and Temperature Transmitter RHT-WM Operating Manual. Omni Instruments Inc., USA.
[29] Mantracourt (2009) T24-WSS Wind Speed Sensor (Anemometer). Zse Electronic Mess-Systeme & Sensortechnik Gmbh, Germany.
[30] Monnit (2012) Wireless Humidity (RH) Sensor. Monnit Corporation, Utah.
[31] Monnit (2013) Monnit Wi-Fi Humidity Sensor. Monnit Corporation, Utah.
[32] Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010) Structural Monitoring of Wind Turbines Using Wireless Sensor Networks. Smart Structures and Systems, 6, 183-196.
http://dx.doi.org/10.12989/sss.2010.6.3.183
[33] Vick, B.D., Clark, R.N., Ling, J. and Ling, S. (2003) Remote Solar, Wind, and Hybrid Solar/Wind Energy Systems for Purifying Water. Journal of Solar Energy Engineering, 125, 107-111.
http://dx.doi.org/10.1115/1.1531148
[34] Martinez, T.M., Nelson, J.S. and Begay-Campbell, S. (2005) Remote Monitoring System Design-Sustainable Systems for the Navajo Tribal Utility Authority. Sandia National Laboratories, Albuquerque.
[35] Andreotti, A., Mottola,F., Pagano, M. and Velotto, G. (2008) Design Ofultracapacitor Based Filter for Isolated PV Source Feeding Pulsing Load. Electric Power Systems Research, 78, 1038-1046.
http://dx.doi.org/10.1016/j.epsr.2007.08.003
[36] Bergonzini, C., Brunelli, D. and Benini, L. (2010) Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectronics Journal, 41, 766-777.
http://dx.doi.org/10.1016/j.mejo.2010.05.003
[37] Logerais, P.O., Riou, O., Camara, M.A. and Durastanti, J.F. (2013) Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, Article ID: 659014.
http://dx.doi.org/10.1155/2013/659014
[38] Rafik, F., Gualous, H., Gallay, R., Crausaz, A. and Berthon, A. (2007) Frequency, Thermal and Voltage Supercapacitor Characterization and Modeling. Journal of Power Sources, 165, 928-934.
http://dx.doi.org/10.1016/j.jpowsour.2006.12.021
[39] Sevcik, P. and Kovar, O. (2013) Power Unit Based on Supercapacitors and Solar Cell Module. 1st International Virtual Scientific Conference, Zilina, 10-14 June 2013, 468-471.
[40] Martino, M. and Varley, J. (2012) A Wireless Sensor Node Powered by a PV/Supercapacitor/Battery Trio. University of Toronto, Toronto. www.ti.com/corp/docs/university/
docs/University_of_Toronto_Wireless_Sensor_Node_MatthewMartino_JordanVarley.pdf
[41] American Wind Energy Association (AWEA) (2006) Wind Power Outlook 2006.
http://www.awea.org/pubs/documents/Outlook_2006.pdf
[42] USA Environmental Protection Agency (EPA) (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications. EPA-454/R-99-005.
[43] WRIGHT (2012) Uranium Study: Air Quality Monitoring Report. DEQ/DMME Contract No. EP881027. Wright Environmental Services Inc., 1-69.
[44] de Noord, M., Curvers, A., Eecen, P., Antoniou, I., J?rgensen, H.E., Pedersen, T.F., Bradley, S., von Hünerbein, S., Kindler, D., Mellinghoff, H. and Emeis, S. (2005) WISE Wind Energy SODAR Evaluation Final Report. EU Project NNE5-2001-297, ECN-C--05-044, 1-95.
[45] Antoniou, I., J?rgensen, H.E., von Hünerbein, S., Bradley, S.G., Kindler, D., Warmbier, G. and de Noord, M. (2004) The Profiler Inter-Comparison Experiment (PIE). European Wind Energy Conference (EWEC), London, 22-25 November 2004.
[46] Suriyachai, P., Roedig, U. and Scott, A. (2012) A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 14, 240-264.
http://dx.doi.org/10.1109/SURV.2011.020211.00036
[47] Klaib, A.R., Shubair, R.M., Al-Qutayri, M.A. and Ng, J.W.P. (2011) An Overview of Localization Techniques for Wireless Sensor Networks. International Conference on Innovations in Information Technology, Abu Dhabi, 25-27 April 2011, 167-172.
[48] Crossbow (2012) Wireless Measurement System: MICAz. MICAz Data Sheet.
[49] Sudevalyam, S. and Kulkarni, P. (2011) Energy Harvesting Sensor Nodes: Survey and Implication. IEEE Communications Surveys and Tutorials, 13, 443-461.
http://dx.doi.org/10.1109/SURV.2011.060710.00094
[50] Devabhaktuni, V., Alam, M., Depuru, S.S.,Green, R. C.Nims, D., and Near, C. (2013) Solar energy:Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564.
http://dx.doi.org/10.1016/j.rser.2012.11.024
[51] Bates, J., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000) Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ionics, 135, 33-45.
http://dx.doi.org/10.1016/S0167-2738(00)00327-1
[52] Simjee, F. and Chou, P.H. (2006) Everlast: Long-Life, Supercapacitor-Operated Wireless Sensor Node. Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, 4-6 October 2006, 197-202.
[53] Holloday, J.D., Jones, E.O., Phelps, M. and Hu, J. (2002) Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources, 108, 21-27.
http://dx.doi.org/10.1016/S0378-7753(01)01011-4
[54] Schaevitz, S.B., Franz, A.J., Jensen, K.F. and Schmidt, M.A. (2001) A Combustion-Based MEMS Thermoelectric Power Generator. 11th International Conference on Solid-State Sensors and Actuators, Munich, 10-14 June 2001, 30- 33.
[55] Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F. and Schmidt, M.A. (2003) A Thermophotovoltaic Micro-Generator for Portable Power Applications. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, 714-717.
[56] Randall, J.F. (2003) On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
[57] Corke, P., Valencia, P., Sikka, P., Wark, T. and Overs, L. (2007) Long-Duration Solar-Powered Wireless Sensor Networks. 4th Workshop on Embedded Networked Sensors, Cork.
[58] Yang, B. and Sun, D. (2013) Testing, Inspecting and Monitoring Technologies for Wind Turbine Blades: A Survey. Renewable and Sustainable Energy Reviews, 22, 515-526.
http://dx.doi.org/10.1016/j.rser.2012.12.056
[59] Lynch, J.P. and Loh, K.J. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38, 91-130.
http://dx.doi.org/10.1177/0583102406061499
[60] Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) Localized Structural Health Monitoring Using Energy-Efficient Wireless Sensor Networks. IEEE Sensors Journal, 9, 1596-1604.
http://dx.doi.org/10.1109/JSEN.2009.2019318
[61] Hyers, R., McGowan, J., Sullivan, K., Manwell, J. and Syrett, B. (2006) Condition Monitoring and Prognosis of Utility Scale Wind Turbines. Energy Materials, 1, 187-203.
[62] Ishengoma, F. (2014) A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype Using ECHERP. International Journal of Computer Science and Network Solutions, 2, 24-36.
[63] Laurier, S. (2007) Experimental Analysis of Photovoltaic Energy Scavengers for Sensor Nodes. M.Sc. Thesis, Computer Engineering and Networks Laboratory, University of Ghent, Belgium.
[64] Han, S., Kang, Y., Park, K. and Jang, M. (2007) Design of Environment Monitoring System for Aquaculture Farms. 2007 Frontiers in the Convergence of Bioscience and Information Technologies, The Jeju Island, 11-13 October 2007, 889- 893.
[65] Shifeng, Y., Jing, K. and Jimin, Z. (2007) Wireless Monitoring System Foraquaculture Environment. IEEE International Workshop on RF Integration Technology, Singapore, 9-11 December 2007, 274-277.
[66] Lu, Y.L., Lin, C.Y. and Tsai, W.S. (2012) Application of Solar Wireless Sensor Network to Monitor Water-Quality in Cage Aquaculture Zone in the Inner Sea at Penghu. AFITA/WCCA 2012 Conference, Taiwan, 3-6 September 2012.
[67] Campbell Scientific (2009) Model 014A Met One Wind Speed Sensor Instruction Manual. Campbell Scientific Inc., Utah.
[68] Omni Instruments (2009) Humidity and Temperature Transmitter RHT-WM Operating Manual. Omni Instruments Inc., USA.
[69] Mantracourt (2009) T24-WSS Wind Speed Sensor (Anemometer). Zse Electronic Mess-Systeme & Sensortechnik Gmbh, Germany.
[70] Monnit (2012) Wireless Humidity (RH) Sensor. Monnit Corporation, Utah.
[71] Monnit (2013) Monnit Wi-Fi Humidity Sensor. Monnit Corporation, Utah.
[72] Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010) Structural Monitoring of Wind Turbines Using Wireless Sensor Networks. Smart Structures and Systems, 6, 183-196.
http://dx.doi.org/10.12989/sss.2010.6.3.183
[73] Vick, B.D., Clark, R.N., Ling, J. and Ling, S. (2003) Remote Solar, Wind, and Hybrid Solar/Wind Energy Systems for Purifying Water. Journal of Solar Energy Engineering, 125, 107-111.
http://dx.doi.org/10.1115/1.1531148
[74] Martinez, T.M., Nelson, J.S. and Begay-Campbell, S. (2005) Remote Monitoring System Design-Sustainable Systems for the Navajo Tribal Utility Authority. Sandia National Laboratories, Albuquerque.
[75] Andreotti, A., Mottola,F., Pagano, M. and Velotto, G. (2008) Design Ofultracapacitor Based Filter for Isolated PV Source Feeding Pulsing Load. Electric Power Systems Research, 78, 1038-1046.
http://dx.doi.org/10.1016/j.epsr.2007.08.003
[76] Bergonzini, C., Brunelli, D. and Benini, L. (2010) Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectronics Journal, 41, 766-777.
http://dx.doi.org/10.1016/j.mejo.2010.05.003
[77] Logerais, P.O., Riou, O., Camara, M.A. and Durastanti, J.F. (2013) Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, Article ID: 659014.
http://dx.doi.org/10.1155/2013/659014
[78] Rafik, F., Gualous, H., Gallay, R., Crausaz, A. and Berthon, A. (2007) Frequency, Thermal and Voltage Supercapacitor Characterization and Modeling. Journal of Power Sources, 165, 928-934.
http://dx.doi.org/10.1016/j.jpowsour.2006.12.021
[79] Sevcik, P. and Kovar, O. (2013) Power Unit Based on Supercapacitors and Solar Cell Module. 1st International Virtual Scientific Conference, Zilina, 10-14 June 2013, 468-471.
[80] Martino, M. and Varley, J. (2012) A Wireless Sensor Node Powered by a PV/Supercapacitor/Battery Trio. University of Toronto, Toronto. www.ti.com/corp/docs/university/docs/University
_of_Toronto_Wireless_
Sensor_Node_MatthewMartino_JordanVarley.pdf

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.