Share This Article:

The Connection between the Basel Problem and a Special Integral

Abstract Full-Text HTML Download Download as PDF (Size:2576KB) PP. 2570-2584
DOI: 10.4236/am.2014.516246    3,400 Downloads   3,966 Views   Citations

ABSTRACT

By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a special integral. Furthermore, we find that this special integral is two times of another special integral. By using this fact we give an easy way to calculate the value of the alternating sum of without using the Fourier expansion. Also, we discuss the relationship between Genocchi numbers and Bernoulli numbers and get some results about Bernoulli polynomials.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Xu, H. and Zhou, J. (2014) The Connection between the Basel Problem and a Special Integral. Applied Mathematics, 5, 2570-2584. doi: 10.4236/am.2014.516246.

References

[1] http://en.wikipedia.org/wiki/Basel_problem
[2] Lesko, J.P. and Smith, W.D. (2003) A Laplace Transform Technique for Evaluating Infinite Series. Mathematics Magazine, 76, 394-398.
[3] Chapman, R. (2003) Evaluating .
http://secamlocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
[4] Mei, J.Q. (2011) Calculus. Higher Education Press, Beijing.
[5] Grafakos, L. (2004) Classical Fourier Analysis. Graduate Texts in Mathematics (Book 249). 2nd Edition, Springer, New York.
[6] Burkard, E. (2010) Math 209C Homework 1.
http://math.ucr.edu/~edwardb/Graduate%20Classes/Math%20209C/209C%20HW1.pdf
[7] http://en.wikipedia.org/wiki/Fubini's_theorem
[8] Pólya, G. and Szeg?, G. (2004) Problems and Theorems in Analysis I. Springer, Berlin.
[9] Lang, S. (2003) Ellipic Functions. Springer-Verlag, Berlin.
[10] Pólya, G. and Szeg?, G. (2004) Problems and Theorems in Analysis II. Springer, Berlin.
[11] Stein, E.M. and Shakarchi, R. (2003) Fourier Analysis. Princeton University Press, Princeton.
[12] Stein, E.M. and Shakarchi, R. (2003) Complex Analysis. Princeton University Press, Princeton.
[13] http://en.wikipedia.org/wiki/Genocchi_number

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.